Mechanics and Dynamical Systems with Mathematica(r)

Mechanics and Dynamical Systems with Mathematica(r)

Aus der Reihe

Fr. 77.90

inkl. gesetzl. MwSt.

Mechanics and Dynamical Systems with Mathematica(r)

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 77.90
Taschenbuch

Taschenbuch

ab Fr. 72.90
eBook

eBook

ab Fr. 62.90

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

28.12.1999

Verlag

Birkhäuser Boston

Seitenzahl

417

Maße (L/B/H)

24.2/16.3/2.6 cm

Beschreibung

Rezension

"The Mathematica notebook files are well written.… Most procedures are quite general and may be adapted to different models. The book covers a huge amount of ground… The nice thing about this book is the great variety of mathematical models treated."  
—Mathematical Reviews



"…Solid motivations are always given.… The book includes a great number of examples, taken from practice, many of them being worked out completely.… [It is] useful for practitioners and even mathematicians could find a lot of very interesting examples and motivations."  
—Mathematica, Revue d’Analyse Numerique et de Theorie de l’Approximation



"A distinguishing feature of this book’s treatment of classical mechanics is the way in which it presents modeling, analysis and computation in a unified manner.… This text gives a surprisingly readable yet thorough account of classical mechanics and the use of Mathematica to aid the numerical and analytic solution of many standard problems. It is aimed at advanced undergraduate students and is, in fact, [a] very student-friendly text. There are many step-by-step descriptions of problem-solving methods that may be applied to broad classes of problems.… This book will be of great use to those struggling with advanced applications and concepts."  
—Scientific Computing World


"In this advanced undergraduate book on analytical mechanics, [the authors] develop enough of the theory of dynamical systems to provide an appropriate mathematical context for mechanics as well as useful analytical tools. They also provide Mathematica computer routines (available at the publisher's Web site) so the reader can visualize and experiment with the book's examples. This powerful combination of qualitative and quantitative tools allows for the analysis of a rich range of topics and material including some outside of mechanics.Still, the volume is fundamentally a textbook on classical mechanics and can be recommended as such, perhaps more than as a fundamental addition to a library collection."  
—Choice

Zitat

"The Mathematica notebook files are well written.... Most procedures are quite general and may be adapted to different models. The book covers a huge amount of ground... The nice thing about this book is the great variety of mathematical models treated." -Mathematical Reviews "...Solid motivations are always given.... The book includes a great number of examples, taken from practice, many of them being worked out completely.... [It is] useful for practitioners and even mathematicians could find a lot of very interesting examples and motivations." -Mathematica, Revue d'Analyse Numerique et de Theorie de l'Approximation "A distinguishing feature of this book's treatment of classical mechanics is the way in which it presents modeling, analysis and computation in a unified manner.... This text gives a surprisingly readable yet thorough account of classical mechanics and the use of Mathematica to aid the numerical and analytic solution of many standard problems. It is aimed at advanced undergraduate students and is, in fact, [a] very student-friendly text. There are many step-by-step descriptions of problem-solving methods that may be applied to broad classes of problems.... This book will be of great use to those struggling with advanced applications and concepts." -Scientific Computing World
"In this advanced undergraduate book on analytical mechanics, [the authors] develop enough of the theory of dynamical systems to provide an appropriate mathematical context for mechanics as well as useful analytical tools. They also provide Mathematica computer routines (available at the publisher's Web site) so the reader can visualize and experiment with the book's examples. This powerful combination of qualitative and quantitative tools allows for the analysis of a rich range of topics and material including some outside of mechanics. Still, the volume is fundamentally a textbook on classical mechanics and can be recommended as such, perhaps more than as a fundamental addition to a library collection." -Choice

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

28.12.1999

Verlag

Birkhäuser Boston

Seitenzahl

417

Maße (L/B/H)

24.2/16.3/2.6 cm

Gewicht

776 g

Auflage

2000 edition

Sprache

Englisch

ISBN

978-0-8176-4007-1

Weitere Bände von Modeling and Simulation in Science, Engineering and Technology

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Mechanics and Dynamical Systems with Mathematica(r)
  • I Mathematical Methods for Differential Equations.- 1 Models and Differential Equations.- 1.1 Introduction.- 1.2 Mathematical Models and Computation.- 1.3 Examples of Mathematical Models.- 1.4 Validation, Determinism, and Stochasticity.- 2 Models and Mathematical Problems.- 2.1 Introduction.- 2.2 Classification of Models.- 2.3 Statement of Problems.- 2.4 Solution of Initial-Value Problems.- 2.5 Representation of the Dynamic Response.- 2.6 On the Solution of Boundary-Value Problems.- 2.7 Problems.- 3 Stability and Perturbation Methods.- 3.1 Introduction.- 3.2 Stability Definitions.- 3.3 Linear Stability Methods.- 3.4 Nonlinear Stability.- 3.5 Regular Perturbation Methods.- 3.6 Problems.- II Mathematical Methods of Classical Mechanics.- 4 Newtonian Dynamics.- 4.1 Introduction.- 4.2 Principles of Newtonian Mechanics.- 4.3 Balance Laws for Systems of Point Masses.- 4.4 Active and Reactive Forces.- 4.4.1 Constraints and reactive forces.- 4.4.2 Active forces and force fields.- 4.5 Applications.- 4.5.1 Dynamics of simple pendulum.- 4.5.2 Particle subject to a central force.- 4.5.3 Heavy particle falling in air.- 4.5.4 Three-point masses subject to elastic forces.- 4.6 Problems.- 5 Rigid Body Dynamics.- 5.1 Introduction.- 5.2 Rigid Body Models.- 5.3 Active and Reactive Forces in Rigid Body Dynamics.- 5.4 Constrained Rigid Body Models.- 5.5 Articulated Systems.- 5.6 Applications.- 5.6.1 Rigid body model of a vehicle and plane dynamics.- 5.6.2 Compound pendulum.- 5.6.3 Uniform rotations.- 5.6.4 Free rotations of a gyroscope.- 5.6.5 Ball on an inclined plane.- 5.7 Problems.- 6 Energy Methods and Lagrangian Mechanics.- 6.1 Introduction.- 6.2 Elementary and Virtual Work.- 6.3 Energy Theorems.- 6.4 The Method of Lagrange Equations.- 6.5 Potential and First Integrals.- 6.6 Energy Methods and Stability.- 6.7 Applications.- 6.7.1 Three body articulated system.- 6.7.2 Stability of Duffing’s model.- 6.7.3 Free rotations or Poinsot’s motion.- 6.7.4 Heavy gyroscope.- 6.7.5 The rolling coin.- 6.8 Problems.- III Bifurcations, Chaotic Dynamics, Stochastic Models, and Discretization of Continuous Models.- 7 Deterministic and Stochastic Models in Applied Sciences.- 7.1 Introduction.- 7.2 Mathematical Modeling in Applied Sciences.- 7.3 Examples of Mathematical Models.- 7.4 Further Remarks on Modeling.- 7.5 Mathematical Modeling and Stochasticity.- 7.5.1 Random variables and stochastic calculus.- 7.5.2 Moment representation of the dynamic response.- 7.5.3 Statistical representation of large systems..- 7.6 Problems.- 8 Chaotic Dynamics, Stability, and Bifurcations.- 8.1 Introduction.- 8.2 Stability Diagrams.- 8.3 Stability Diagrams and Potential Energy.- 8.4 Limit Cycles.- 8.5 Hopf Bifurcation.- 8.6 Chaotic Motions.- 8.7 Applications.- 8.7.1 Ring on a rotating wire.- 8.7.2 Metallic meter.- 8.7.3 Line galloping model.- 8.7.4 Flutter instability model.- 8.7.5 Models presenting transition to chaos.- 8.8 Problems.- 9 Discrete Models of Continuous Systems.- 9.1 Introduction.- 9.2 Diffusion Models.- 9.3 Mathematical Models of Traffic Flow.- 9.4 Mathematical Statement of Problems.- 9.5 Discretization of Continuous Models.- 9.6 Problems.- Appendix I. Numerical Methods for Ordinary Differential Equations.- 1 Introduction.- 2 Numerical Methods for Initial-Value Problems.- 3 Numerical Methods for Boundary-Value Problems.- Appendix II. Kinematics, Applied Forces, Momentum and Mechanical Energy.- 1 Introduction.- 2 Systems of Applied Forces.- 3 Fundamental of Kinematics.- 4 Center of Mass.- 5 Tensor of Inertia.- 6 Linear Momentum.- 7 Angular Momentum.- 8 Kinetic Energy.- Appendix III. Scientific Programs.- 1 Introduction to Programming.- 2 Scientific Programs.- References.