Topological Nonlinear Analysis II
Band 27

Topological Nonlinear Analysis II

Degree, Singularity and variations

Aus der Reihe

Fr. 191.00

inkl. gesetzl. MwSt.

Topological Nonlinear Analysis II

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 191.00
Taschenbuch

Taschenbuch

ab Fr. 191.00
eBook

eBook

ab Fr. 187.90

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.06.1997

Verlag

Birkhäuser Boston

Seitenzahl

605

Maße (L/B/H)

24.1/16/3.8 cm

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.06.1997

Verlag

Birkhäuser Boston

Seitenzahl

605

Maße (L/B/H)

24.1/16/3.8 cm

Gewicht

1086 g

Auflage

1997

Sprache

Englisch

ISBN

978-0-8176-3886-3

Weitere Bände von Progress in Nonlinear Differential Equations and Their Applications

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Topological Nonlinear Analysis II
  • Classical Solutions for a Perturbed N-Body System.- Variational Setting for Newton’s Equations.- The Kepler Problem Revisited.- The N-Body Problem.- Results form Critical Point Theory.- Classical Periodic Solutions for the Perturbed N-Body System.- Acknowledgments.- References.- Degree Theory: Old and New.- Degree Theory for Maps in the Sobolev Class H1(S2, S2).- Degree Theory for Maps in the Sobolev Class H1(S1, S1).- Degree Theory for Maps in VMO (Sn, Sn).- Further Properties of VMO Maps in Connection with Topology.- Degree Theory for VMO Maps on Domains.- References.- Global Structure for Nonlinear Operators in Differential and Integral Equations I. Folds.- Fréchet Derivatives.- Fredholm Maps.- Local Structure of Folds.- Abstract Global Characterization of the Fold Map.- Ambrosetti-Prodi and Berger-Podolak — Church Fold Maps.- McKean-Scovel Fold Map.- Giannoni-Micheletti Fold Map.- Mandhyan Fold Map.- Oriented Global Fold Maps.- A Second Mandhyan Fold Map.- Jumping Singularities.- References.- Global Structure for Nonlinear Operators in Differential and Integral Equations II. Cusps.- Critical Values of Fredholm Maps.- Applications of Critical Values to Nonlinear Differential Equations.- Factorization of Differentiate Maps.- Local Structure of Cusps.- Some Local Cusp Results.- von Kármán Equations.- Abstract Global Characterization of the Cusp Map.- Mandhyan Integral Operator Cusp Map.- Pseudo-Cusp.- Cafagna and Donati Theorems on Ordinary Differential Equations.- Micheletti Cusp-like Map.- Cafagna Dirichlet Example.- u3 Dirichlet Map — Initial Results.- u3 Dirichlet Map — The Singular Set and its Image.- u3 Dirichlet Map — The Global Result.- Ruf u3 Neumann Cusp Map.- Ruf’s Higher Order Singularities.- Damon’s Work in Differential Equations.- References.- Degree for Gradient Equivariant Maps and Equivariant Conley Index.- Basic Notions of Equivariant Topology.- Remarks and Examples.- An Analytic Definition of the Gradient Equivariant Degree.- Technicalities.- Equivariant Conley Index.- Box-like Index Pairs.- The torn Dieck Ring.- Bifurcation.- References.- Variations and Irregularities.- Summary.- Generalized Differential Operators.- Irregularities.- Mass, Length, Energy.- Homogeneous Dirichlet Spaces.- Fractals.- References.- Singularity Theory and Bifurcation Phenomena in Differential Equations.- The Normal Forms for f : ?n ? ?m.- The Malgrange Preparation Theorem.- Singularity Theory for Mappings Between Banach Spaces.- Applications to Elliptic Boundary Value Problems.- First Order Differential Equations.- Global Equivalence Theorems.- Problems with Additional Parameters: Unfoldings.- Bifurcation of Minimal Surfaces.- Singularities at Double Eigenvalues.- Multiplicity by combining Local and Global Information.- Some Numerical Results.- References.- Bifurcation from the Essential Spectrum.- General Setting.- Nonlinear Perturbation of a Self-Adjoint Operator.- Bifurcation from the Infimum of the Spectrum.- Bifurcation into Spectral Gaps.- Semilinear Elliptic Equations.- References.- Rotation of Vector Fields: Definition, Basic Properties, and Calculation.- The Brouwer-Hopf Theory of Continuous Vector Fields.- The Leray-Schauder Theory of Completely Continuous Vector Fields.- Vector Fields with Noncompact Operators.- Some Generalizations and Modifications.- References.