Multicomponent Flow Modeling

Multicomponent Flow Modeling

Aus der Reihe

Fr. 263.00

inkl. gesetzl. MwSt.

Multicomponent Flow Modeling

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 263.00
Taschenbuch

Taschenbuch

ab Fr. 263.00
eBook

eBook

ab Fr. 275.90

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.08.1999

Verlag

Birkhäuser Boston

Seitenzahl

321

Maße (L/B/H)

24.1/16/2.4 cm

Beschreibung

Rezension

"This book (written with originality by a recognized expert actively working in the title area) can be considered as an interdisciplinary presentation of multicomponent flow models, their mathematical properties, and selected numerical simulations…The book is well organized, clearly written, and can serve as a very useful reference book for specialists (circa 300 contemporary references) and as a good introduction to the subject for senior and graduate-level students in applied mathematics."


–Zentralblatt Math

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.08.1999

Verlag

Birkhäuser Boston

Seitenzahl

321

Maße (L/B/H)

24.1/16/2.4 cm

Gewicht

667 g

Auflage

1999

Sprache

Englisch

ISBN

978-0-8176-4048-4

Weitere Bände von Modeling and Simulation in Science, Engineering and Technology

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Multicomponent Flow Modeling
  • 1. Introduction.- 2. Fundamental Equations.- 2.1. Introduction.- 2.2. Conservation equations.- 2.2.1. Species, momentum, and energy.- 2.2.2. Total mass conservation.- 2.2.3. Species mass fractions.- 2.2.4. Kinetic and internal energy.- 2.2.5. Species independent specific forces.- 2.3. Thermodynamics.- 2.3.1. Density and internal energy.- 2.3.2. Enthalpy.- 2.3.3. Mole fractions and molar concentrations.- 2.3.4. Enthalpy and temperature equations.- 2.3.5. Entropy and Gibbs function.- 2.3.6. Alternative formulations.- 2.3.7. Thermodynamic data.- 2.4. Chemistry.- 2.4.1. Elementary reactions.- 2.4.2. Maxwellian production rates.- 2.4.3. Total mass conservation.- 2.4.4. Notation for three-body reactions.- 2.4.5. Chemistry data.- 2.5. Transport fluxes.- 2.5.1. Viscous tensor, species mass fluxes, and heat flux.- 2.5.2. Diffusion velocities and diffusion matrix.- 2.5.3. Alternative formulations.- 2.5.4. Transport coefficients.- 2.6. Entropy.- 2.6.1. Entropy differential.- 2.6.2. Entropy equation.- 2.6.3. Entropy production.- 2.7. Boundary conditions.- 2.7.1. Dirichlet and Neumann boundary conditions.- 2.7.2. Porous walls.- 2.7.3. Catalytic plates.- 2.8. Notes.- 2.9. References.- 3. Approximate and Simplified Models.- 3.1. Introduction.- 3.2. One-reaction chemistry.- 3.2.1. One-reaction kinetics.- 3.2.2. Approximations for one-reaction kinetics.- 3.2.3. Simplified equations.- 3.2.4. Deficient reactants.- 3.3. Small Mach number flows.- 3.3.1. Orders of magnitude.- 3.3.2. Momentum equation and pressure splitting.- 3.3.3. Energy equation.- 3.3.4. Isobaric equations.- 3.3.5. Vorticity-velocity formulation.- 3.3.6. Strained flows.- 3.3.7. Shvab-Zeldovitch formulation.- 3.4. Coupling.- 3.4.1. Coupling of partial differential equations.- 3.4.2. Dilution approximation.- 3.4.3. Constant density approximation.- 3.5. Notes.- 3.6. References.- 4. Derivation from the Kinetic Theory.- 4.1. Introduction.- 4.2. Kinetic framework.- 4.2.1. Distribution functions.- 4.2.2. Macroscopic properties.- 4.2.3. Boltzmann equations.- 4.2.4. Scattering source terms.- 4.2.5. Reactive source terms.- 4.2.6. Examples.- 4.3. Kinetic entropy.- 4.3.1. Definition of the kinetic entropy.- 4.3.2. Kinetic entropy equation.- 4.3.3. Positivity of entropy production.- 4.4. Enskog expansion.- 4.4.1. Asymptotic orders.- 4.4.2. Collisional invariants of the fast operator.- 4.4.3. Macroscopic equations.- 4.5. Zero-order approximation.- 4.5.1. Maxwellian distributions.- 4.5.2. Zero-order macroscopic equations.- 4.5.3. Zero-order time derivatives.- 4.6. First-order approximation.- 4.6.1. Linearized Boltzmann operator.- 4.6.2. Linearized Boltzmann equations.- 4.6.3. Expansion of perturbed distributions.- 4.6.4. Macroscopic equations and transport fluxes.- 4.6.5. Transport coefficients.- 4.6.6. Chemistry source terms.- 4.6.7. Thermodynamics.- 4.7. Transport linear systems.- 4.7.1. Galerkin method.- 4.7.2. Basis functions.- 4.7.3. Structure of transport linear systems.- 4.7.4. Sparse transport matrix.- 4.7.5. Vanishing mass fractions.- 4.8. Notes.- 4.9. References.- 5. Transport Coefficients.- 5.1. Introduction.- 5.2. Transport algorithms.- 5.2.1. Transport linear systems.- 5.2.2. Mathematical structure.- 5.2.3. Direct inversion.- 5.2.4. Iterative methods.- 5.2.5. Empirical expressions.- 5.2.6. Operational count.- 5.2.7. Stability for vanishing mass fractions.- 5.3. Molecular parameters.- 5.3.1. Interaction potentials.- 5.3.2. Collision integrals.- 5.3.3. Viscosity of pure gases and binary diffusion.- 5.3.4. Relaxation and diffusion of internal energy.- 5.3.5. Transport data.- 5.4. Shear viscosity.- 5.5. Volume viscosity.- 5.6. Diffusion matrix.- 5.7. Thermal conductivity.- 5.8. Thermal diffusion ratios.- 5.9. Partial thermal conductivity.- 5.10. Thermal diffusion coefficients.- 5.11. Notes.- 5.12. References.- 6. Mathematics of Thermochemistry.- 6.1. Introduction.- 6.2. Thermodynamics with volume densities.- 6.2.1. State variables (T, ?1, …, ?n).- 6.2.2. Energy and enthalpy per unit volume.- 6.2.3. Entropy and Gibbs function per unit volume.- 6.2.4. Assumptions.- 6.2.5. Differentials and convexity.- 6.3. Thermodynamics with mass densities.- 6.3.1. State variables (T, p, Y1, …, Yn).- 6.3.2. Energy and enthalpy per unit mass.- 6.3.3. Entropy and Gibbs function per unit mass.- 6.3.4. Assumptions.- 6.3.5. Differentials and convexity.- 6.3.6. Miscellaneous.- 6.4. Chemistry sources.- 6.4.1. Chemical reactions.- 6.4.2. Maxwellian production rates.- 6.4.3. Assumptions.- 6.4.4. Mass weights.- 6.4.5. Mass conservation.- 6.4.6. Creation and destruction rates.- 6.4.7. Symmetric formulation for the rates of progress.- 6.5. Positive equilibrium points.- 6.5.1. Definition of equilibrium points.- 6.5.2. Equilibrium points with T and ? fixed.- 6.5.3. Equilibrium points with h and ? fixed.- 6.5.4. Smoothness of equilibrium points.- 6.6. Boundary equilibrium points.- 6.6.1. Definition of boundary equilibrium points.- 6.6.2. Decomposition chain property.- 6.7. Inequalities near equilibrium.- 6.7.1. Production rates and chemical dissipation.- 6.7.2. Entropy difference and chemical dissipation.- 6.8. A global stability inequality.- 6.9. Notes.- 6.10. References.- 7. Mathematics of Transport Coefficients.- 7.1. Introduction.- 7.1.1. Definition of transport fluxes.- 7.1.2. Diffusion velocities.- 7.1.3. Alternative formulations.- 7.2. Assumptions on transport coefficients.- 7.3. Properties of diffusion matrices.- 7.3.1. First properties of the diffusion matrix D.- 7.3.2. First properties of the flux diffusion matrix C.- 7.3.3. Flux splitting.- 7.3.4. Generalized inverses of C and D.- 7.3.5. Modified diffusion coefficients.- 7.4. Properties of other coefficients.- 7.4.1. Alternative coefficients.- 7.4.2. Waldmann coefficients.- 7.5. Diagonal diffusion.- 7.5.1. Irreducibility of C and D.- 7.5.2. Matrix E and mass fraction gradients.- 7.5.3. Irreducibility of CE and DE.- 7.5.4. Diagonal diffusion of C and D over U?.- 7.5.5. Diagonal diffusion of CE and DE over U?.- 7.5.6. Diagonal diffusion of C and D for n — 1 species.- 7.5.7. Diagonal diffusion of CE and DE for n — 1 species.- 7.6. Diffusion inequalities.- 7.6.1. Fundamental diffusion inequality.- 7.6.2. Positivity properties of C.- 7.7. Stefan-Maxwell equations.- 7.7.1. Matrices ? and D.- 7.7.2. Matrices ? and C.- 7.7.3. Diagonal first-order diffusion.- 7.7.4. Asymptotic expansions of D and C.- 7.8. Notes.- 7.9. References.- 8. Symmetrization.- 8.1. Introduction.- 8.2. Vector notation.- 8.2.1. Conservative and natural variables.- 8.2.2. Vector equations.- 8.3. Quasilinear form.- 8.3.1. The map Z ? U.- 8.3.2. Dissipation matrices and quasilinear form.- 8.4. Symmetrization and entropic variables.- 8.4.1. Symmetric conservative forms.- 8.4.2. Entropic variables.- 8.4.3. The equivalence theorem.- 8.5. Normal forms.- 8.5.1. Definition of normal forms.- 8.5.2. Nullspace invariance property.- 8.5.3. Description of normal variables.- 8.6. Symmetrization for multicomponent flows.- 8.6.1. Entropy and symmetric conservative form.- 8.7. Normal forms for multicomponent flows.- 8.7.1. Nullspace of dissipation matrices.- 8.7.2. First normal form.- 8.7.3. Natural normal form.- 8.7.4. Intermediate normal form.- 8.8. Notes.- 8.9. References.- 9. Asymptotic Stability.- 9.1. Introduction.- 9.2. Governing equations.- 9.2.1. Abstract system.- 9.2.2. Equilibrium points.- 9.2.3. Entropy equation.- 9.2.4. Functional spaces.- 9.3. Local dissipative structure.- 9.3.1. Linearized equations.- 9.3.2. Locally stable source terms.- 9.3.2. Global dissipative structure.- 9.4. Global existence theorem.- 9.4.1. Main result.- 9.4.2. Local existence.- 9.4.3. A priori estimates.- 9.4.4. More a priori estimates.- 9.4.5. Global existence proof.- 9.5. Decay estimates.- 9.6. Local dissipativity for multicomponent flows.- 9.6.1. Chemical sources.- 9.6.2. Local dissipative structure.- 9.6.3. Linearized source term.- 9.7. Global existence for multicomponent flows.- 9.7.1. Linearized normal form.- 9.7.2. Global existence and asymptotic stability.- 9.8. Notes.- 9.9. References.- 10. Chemical Equilibrium Flows.- 10.1. Introduction.- 10.2. Governing equations.- 10.2.1. Notation associated with equilibrium.- 10.2.2. Atomic species and formation reactions.- 10.2.3. Equations at chemical equilibrium.- 10.2.4. Conservative and natural variables.- 10.2.5. Fluxes at chemical equilibrium.- 10.2.6. Quasilinear form at chemical equilibrium.- 10.3. Entropy and symmetrization.- 10.3.1. Entropy at chemical equilibrium.- 10.3.2. Symmetrized equations.- 10.4. Normal forms.- 10.4.1. Nullspace invariance property.- 10.4.2. Intermediate normal form.- 10.5. Global existence.- 10.5.1. Local dissipativity.- 10.5.2. Global existence.- 10.6. Notes.- 10.7. References.- 11. Anchored Waves.- 11.1. Introduction.- 11.2. Governing equations.- 11.2.1. Conservation equations.- 11.2.2. Thermodynamic properties.- 11.2.3. Maxwellian chemistry.- 11.2.4. Transport fluxes.- 11.2.5. The temperature equation.- 11.2.6. Boundary conditions.- 11.2.7. Equilibrium limit.- 11.2.8. The matrix L.- 11.2.9. Entropy conservation equation.- 11.3. First properties.- 11.3.1. Preliminaries.- 11.3.2. Reduction to a problem on [0, ?).- 11.3.3. Extension to (—?, 0).- 11.4. Existence on a bounded domain.- 11.4.1. Preliminaries.- 11.4.2. Fixed point formulation.- 11.4.3. Existence of the degree.- 11.4.4. Calculation of the degree.- 11.5. Existence of solutions.- 11.5.1. Uniform estimates for c.- 11.5.2. Convergence towards equilibrium.- 11.5.3. Passage to the limit a ? ?.- 11.6. Notes.- 11.7. References.- 12. Numerical Simulations.- 12.1. Introduction.- 12.2. Laminar flame model.- 12.2.1. Governing equations.- 12.2.2. Boundary conditions.- 12.2.3. Chemical mechanism.- 12.3. Computational considerations.- 12.3.1. Discretized equations.- 12.3.2. Multiple time scales.- 12.3.3. Multiple space scales.- 12.3.4. Nonlinear solvers.- 12.3.5. Pseudo-unsteady iterations.- 12.3.6. Thermochemistry and transport software.- 12.4. Hydrogen-Air Bunsen flame.- 12.4.1. Burner geometry.- 12.4.2. Numerical results.- 12.5. References.