Scientific Computing with Mathematica®

Scientific Computing with Mathematica®

Mathematical Problems for Ordinary Differential Equations

Aus der Reihe

Fr. 161.00

inkl. gesetzl. MwSt.

Scientific Computing with Mathematica®

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 161.00
Taschenbuch

Taschenbuch

ab Fr. 95.90
eBook

eBook

ab Fr. 125.90

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

09.08.2001

Verlag

Birkhäuser Boston

Seitenzahl

270

Maße (L/B/H)

24.1/16/2.1 cm

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

09.08.2001

Verlag

Birkhäuser Boston

Seitenzahl

270

Maße (L/B/H)

24.1/16/2.1 cm

Gewicht

585 g

Auflage

Repr. d. Ausg. v. 2001

Sprache

Englisch

ISBN

978-0-8176-4205-1

Weitere Bände von Modeling and Simulation in Science, Engineering and Technology

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Scientific Computing with Mathematica®
  • 1 Solutions of ODEs and Their Properties.- 1.1 Introduction.- 1.2 Definitions and Existence Theory.- 1.3 Functions DSolve, NDSolve, and Differentiallnvariants.- 1.4 The Phase Portrait.- 1.5 Applications of the Programs Sysn, Phase2D, PolarPhase, and Phase3D.- 1.6 Problems.- 2 Linear ODEs with Constant Coefficients.- 2.1 Introduction.- 2.2 The General Solution of Linear Differential Systems with Constant Coefficients.- 2.3 The Program LinSys.- 2.4 Problems.- 3 Power Series Solutions of ODEs and Frobenius Series.- 3.1 Introduction.- 3.2 Power Series and the Program Taylor.- 3.3 Power Series and Solutions of ODEs.- 3.4 Series Solutions Near Regular Singular Points: Method of Frobenius.- 3.5 The Program SerSol.- 3.6 Other Applications of SerSol.- 3.7 The Program Frobenius.- 3.8 Problems.- 4 Poincaré’s Perturbation Method.- 4.1 Introduction.- 4.2 Poincaré’s Perturbation Method.- 4.3 How to Introduce the Small Parameter.- 4.4 The Program Poincare.- 4.5 Problems.- 5 Problems of Stability.- 5.1 Introduction.- 5.2 Definitions of Stability.- 5.3 Analysis of Stability: The Direct Method.- 5.4 Polynomial Liapunov Functions.- 5.5 The Program Liapunov.- 5.6 Analysis of Stability, the Indirect Method: The Planar Case.- 5.7 The Program LStability.- 5.8 Problems.- 6 Stability: The Critical Case.- 6.1 Introduction.- 6.2 The Planar Case and Poincaré’s Method.- 6.3 The Programs CriticalEqS and CriticalEqN.- 6.4 The Center Manifold.- 6.5 The Program CManifold.- 6.6 Problems.- 7 Bifurcation in ODEs.- 7.1 Introduction to Bifurcation.- 7.2 Bifurcation in a Differential Equation Containing One Parameter.- 7.3 The Programs Bifl and Bif1G.- 7.4 Problems.- 7.5 Bifurcation in a Differential Equation Depending on Two Parameters.- 7.6 The Programs Bif2 and Bif2G.- 7.7 Problems.- 7.8 Hopf’sBifurcation.- 7.9 The Program HopfBif.- 7.10 Problems.- 8 The Lindstedt-Poincaré Method.- 8.1 Asymptotic Expansions.- 8.2 The Lindstedt-Poincaré Method.- 8.3 The Programs LindPoinc and GLindPoinc.- 8.4 Problems.- 9 Boundary-Value Problems for Second-Order ODEs.- 9.1 Boundary-Value Problems and Bernstein’s Theorem.- 9.2 The Shooting Method.- 9.3 The Program NBoundary.- 9.4 The Finite Difference Method.- 9.5 The Programs NBoundaryl and NBoundary2.- 9.6 Problems.- 10 Rigid Body with a Fixed Point.- 10.1 Introduction.- 10.2 Euler’s Equations.- 10.3 Free Rotations or Poinsot’s Motions.- 10.4 Heavy Gyroscope.- 10.5 The Gyroscopic Effect.- 10.6 The Program Poinsot.- 10.7 The Program Solid.- 10.8 Problems.- A How to Use the Package ODE.m.- References.