Holomorphic Curves in Symplectic Geometry
Band 117

Holomorphic Curves in Symplectic Geometry

Aus der Reihe

Fr. 72.90

inkl. gesetzl. MwSt.

Holomorphic Curves in Symplectic Geometry

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 72.90
Taschenbuch

Taschenbuch

ab Fr. 72.90
eBook

eBook

ab Fr. 62.90

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.02.1994

Herausgeber

Michele Audin + weitere

Verlag

Springer Basel

Seitenzahl

331

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.02.1994

Herausgeber

Verlag

Springer Basel

Seitenzahl

331

Maße (L/B/H)

24.1/16/2.5 cm

Gewicht

667 g

Auflage

1994

Sprache

Englisch

ISBN

978-3-7643-2997-6

Weitere Bände von Progress in Mathematics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Holomorphic Curves in Symplectic Geometry
  • Introduction: Applications of pseudo-holomorphic curves to symplectic topology.- 1 Examples of problems and results in symplectic topology.- 2 Pseudo-holomorphic curves in almost complex manifolds.- 3 Proofs of the symplectic rigidity results.- 4 What is in the book… and what is not.- 1: Basic symplectic geometry.- I An introduction to symplectic geometry.- 1 Linear symplectic geometry.- 2 Symplectic manifolds and vector bundles.- Appendix: the Maslov class M. Audin, A. Banyaga, F. Lalonde, L. Polterovich.- II Symplectic and almost complex manifolds.- 1 Almost complex structures.- 2 Hirzebruch surfaces.- 3 Coadjoint orbits (of U(n)).- 4 Symplectic reduction.- 5 Surgery.- Appendix: The canonical almost complex structure on the manifold of 1-jets of pseudo-holomorphic mappings between two almost complexmanifolds P. Gauduchon.- 2: Riemannian geometry and linear connections.- III Some relevant Riemannian geometry.- 1 Riemannian manifolds as metric spaces.- 2 The geodesic flow and its linearisation.- 3 Minimal manifolds.- 4 Two-dimensional Riemannian manifolds.- 5 An application to pseudo-holomorphic curves.- Appendix: the isoperimetric inequality M.-P. Muller.- IV Connexions linéaires, classes de Chern, théorème de Riemann-Roch.- 1 Connexions linéaires.- 2 Classes de Chern.- 3 Le théorème de Riemann-Roch.- Bibliographie.- 3: Pseudo-holomorphic curves and applications.- V Some properties of holomorphic curves in almost complex manifolds.- 1 The equation $$
    \bar \partial f$$
    in C.- 2 Regularity of holomorphic curves.- 3 Other local properties.- 4 Properties of the area of holomorphic curves.- 5 Gromov’s compactness theorem for holomorphic curves.- Appendix: Stokes’ theorem for forms with differentiable coefficients.- VI Singularities and positivity of intersections of J-holomorphic curves.- 1 Elementary properties.- 2 Positivity of intersections.- 3 Local deformations.- 4 Perturbing away singularities.- Appendix: The smoothness of the dependence on ? Gang Liu.- VII Gromov’s Schwarz lemma as an estimate of the gradient for holomorphic curves.- 1 Introduction.- 2 A review of some classical Schwarz lemmas.- 3 Isoperimetric inequalities for J-curves.- 4 The Schwarz and monotonicity lemmas.- 5 Continuous Lipschitz extension across a puncture.- 6 Higher derivatives.- VIII Compactness.- 1 Riemann surfaces with nodes.- 2 Cusp-curves.- 3 Proof of the compactness theorem 2.2.1.- 4 Convergence of parametrised curves.- IX Exemples de courbes pseudo-holomorphes en géométrie riemannienne.- 1 Immersions isométriques elliptiques.- 2 Courbure de Gauss prescrite.- 3 Autres exemples et constructions.- Appendice: convergence d’applications pseudo-holomorphes.- Bibliographie.- X Symplectic rigidity: Lagrangian submanifolds.- 1 Lagrangian constructions.- 2 Symplectic area and Maslov classes—rigidity in split manifolds.- 3 Soft and hard Lagrangian obstructions to Lagrangian embeddings in Cn.- 4 Rigidity in cotangent bundles and applications to mechanics.- 5 Pseudo-holomorphic curves: proof of the main rigidity theorem.- Appendix: Exotic structures on R2n.- Authors’ addresses.