Riemann’s Boundary Problem with Infinite Index
Band 67

Riemann’s Boundary Problem with Infinite Index

Aus der Reihe

Fr. 137.00

inkl. gesetzl. MwSt.

Riemann’s Boundary Problem with Infinite Index

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 137.00
Taschenbuch

Taschenbuch

ab Fr. 137.00
eBook

eBook

ab Fr. 125.90

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.02.1994

Herausgeber

I.V. Ostrovskii

Verlag

Springer Basel

Seitenzahl

252

Maße (L/B/H)

24.8/17.5/2 cm

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.02.1994

Herausgeber

I.V. Ostrovskii

Verlag

Springer Basel

Seitenzahl

252

Maße (L/B/H)

24.8/17.5/2 cm

Gewicht

660 g

Auflage

1994

Übersetzt von

Yu.I. Lyubarskii

Sprache

Englisch

ISBN

978-3-7643-2999-0

Weitere Bände von Operator Theory: Advances and Applications

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Riemann’s Boundary Problem with Infinite Index
  • I.- General Properties of Analytic and Finite Order Functions in the Half-Plane.- 1 Definition of order and indicator of a function holomorphic in an angle. Relations between various definitions of order..- 2 Generalized Nevanlinna and Carleman formulas.- 3 Canonical representation of a function of finite order in the half-plane.- Necessary Conditions of Completely Regular Growth in the Half-Plane.- 4 Definition of completely regular growth in the half-plane. List of results on completely regular growth.- 5 Relation between completely regular growth in open and closed angles.- 6 Asymptotic behavior of the modulus and zero distributions of entire functions of the class A*?.- 7 Existence of argument boundary density for the zero set of a function from the class A*?.- 8 Existence of boundary and argument densities for the zero set of a function from A*?.- Sufficient Conditions of Completely Regular Growth in The Half-Plane and Formulas For Indicators.- 9 The growth of some auxiliary functions of non-integer order.- 10 A criterion for a function to belong to the class A*?, ? being non-integer.- 11 A criterion for a function to belong to the class ¯A*?, ? being non-integer.- 12 The argument-boundary symmetry of the zero set of a function of the class A*?, ? being integer.- 13 The growth of some auxiliary functions of integer order.- 14 A criterion for a function to belong to the class A*?, ? integer.- 15 A criterion for a function to belong to the class ¯A*?, ? integer.- 16 Functions of the class ¯A*? for even and for odd ?.- 17 Functions of a finite degree in the half-plane.- II.- Riemann Boundary Problem With an Infinite Index When the Verticity Index is Less Than 1/2.- 18 Statement of the homogeneous problem.- 19 Canonical function.- 20 Solution of the homogeneous problem in the class BL. Description of solutions of order ?.- 21 Formulation of the non-homogeneous problem and an approach to its solution.- 22 Solution of the non-homogeneous problem.- Riemann Boundary Problem With Infinite Index in The Case Of Verticity of Infinite Order.- 23 Statement of the homogeneous problem.- 24 Canonical function.- 25 Asymptotic properties of zero sets of solutions of the homogeneous problem from the classes B and B*?.- 26 General form of solutions of the homogeneous problem in the class B.- 27 General form of solutions of the homogeneous problem in the class B*?.- 28 An example of a solution of the homogeneous problem in the class B?. Importance of the restriction on the exponent in the Hölder condition for the function ?(t) = arg G(t)/(2?t?).- 29 Statement of the non-homogeneous problem and an approach to its solution.- 30 Auxiliary statements.- 31 Solution of the homogeneous problem.- Riemann Boundary Problem With A Negative Index.- 32 An example of a solvable homogeneous problem with a negative index.- 33 Conditions of unsolvability of the homogeneous problem with a negative index.- 34 Conditions of solvability of the non-homogeneous problem with an index — ?.- On the Paley Problem.- A.1 Formulation of the problem and proff of the main inequality.- A.2 Solution of the Paley problem.