Infinite Dimensional Kähler Manifolds
Band 31

Infinite Dimensional Kähler Manifolds

Aus der Reihe

Fr. 73.90

inkl. gesetzl. MwSt.

Infinite Dimensional Kähler Manifolds

Ebenfalls verfügbar als:

Taschenbuch

Taschenbuch

ab Fr. 73.90
eBook

eBook

ab Fr. 62.90

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

01.09.2001

Herausgeber

Alan Huckleberry + weitere

Verlag

Springer Basel

Seitenzahl

375

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

01.09.2001

Herausgeber

Verlag

Springer Basel

Seitenzahl

375

Maße (L/B/H)

24.4/17/2.2 cm

Gewicht

760 g

Auflage

1001

Sprache

Englisch

ISBN

978-3-7643-6602-5

Weitere Bände von Oberwolfach Seminars

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Infinite Dimensional Kähler Manifolds
  • to Group Actions in Symplectic and Complex Geometry.- I. Finite-dimensional manifolds.- 1. Vector space structures.- 2. Local theory.- 3. Global differentiable objects.- 4. A sketch of integration theory.- 5. Smooth submanifolds.- 6. Induced orientation and Stokes’ theorem.- 7. Functionals on de Rham cohomology.- II. Elements of Lie groups and their actions.- 1. Introduction to actions and quotients.- 2. Examples of Lie groups.- 3. Smooth actions of Lie groups.- 4. Fiber bundles.- III. Manifolds with additional structure.- 1. Geometric structures on vector spaces.- 2. The elements of function theory.- 3. A brief introduction to complex analysis in higher dimensions.- 4. Complex manifolds.- 5. Symplectic manifolds.- 6. Kähler manifolds.- IV. Symplectic manifolds with symmetry.- 1. Introduction to the moment map.- 2. Central extensions.- 3. Existence and uniqueness of the moment map.- 4. Basic examples of the moment map.- 5. The Poisson structure on (Lie G)* and on coadjoint orbits.- 6. The basic formula and some consequences.- 7. Moment maps associated to representations.- V. Kählerian structures on coadjoint orbits of compact groups and associated representations.- 1. Generalities on compact groups.- 2. Root decomposition for $${\mathfrak{k}^\mathbb{C}}$$.- 3. Complexification of compact groups.- 4. Algebraicity properties of complexifications of compact groups.- 5. Compact complex homogeneous spaces.- 6. The root groups SL2(?) and H2(G/P, ?).- 7. Representations of complex semisimple groups.- Literature.- Infinite-dimensional Groups and their Representations.- I. Calculus in locally convex spaces.- 1. Differentiable functions.- 2. Differentiable functions on Banach spaces.- 3. Holomorphic functions.- 4. Differentiable manifolds.- 5 Infinite-dimensional Lie groups.- II. Dual spaces of locally convex spaces.- 1. Metrizability.- 2. Semireflexivity.- 3. Completeness properties of the dual space.- III. Topologies on function spaces.- 1. The space C? (M, V).- 2. Smooth mappings between function spaces.- 3. Applications to groups of continuous mappings.- 4. Spaces of holomorphic functions.- IV. Representations of infinite-dimensional groups.- V. Generalized coherent state representations.- 1. The line bundle over the projective space of a topological vector space.- 2. Applications to representation theory.- References.- Borel-Weil Theory for Loop Groups.- I. Compact groups.- II. Loop groups and their central extensions.- 1. Groups of smooth maps.- 2. Central extensions of loop groups.- 3. Appendix IIa: Central extensions and semidirect products.- 4. Appendix IIb: Smoothness of group actions.- 5. Appendix IIc: Lifting automorphisms to central extensions.- 6. Appendix IId: Lifting automorphic group actions to central extensions.- III. Root decompositions.- 1. The Weyl group.- 2. Root decomposition of the central extension.- IV. Representations of loop groups.- 1. Lowest weight vectors and antidominant weights.- 2. The Casimir operator.- V. Representations of involutive semigroups.- VI. Borel-Weil theory.- VII. Consequences for general representations.- References.- Coadjoint Representation of Virasoro-type Lie Algebras and Differential Operators on Tensor-densities.- I. Coadjoint representation of Virasoro group and Sturm-Liouville operators; Schwarzian derivative as a 1-cocycle.- 1. Virasoro group and Virasoro algebra.- 2. Regularized dual space.- 3. Coadjoint representation of the Virasoro algebra.- 4. The coadjoint action of Virasoro group and Schwarzian derivative.- 5. Space of Sturm-Liouville equations as a Diff+(S1)-module.- 6. The isomorphism.- 7. Vect(S1)-action on the space of Sturm-Liouville operators.- II. Projectively invariant version of the Gelfand-Fuchs cocycle and of the Schwarzian derivative.- 1. Modified Gelfand-Fuchs cocycle.- 2. Modified Schwarzian derivative.- 3. Energy shift.- 4. Projective structures.- III. Kirillov’s method of Lie superalgebras.- 1. Lie superalgebras.- 2. Ramond and Neveu-Schwarz superalgebras.- 3. Coadjoint representation.- 4. Projective equivariance and Lie superalgebra osp(1|2).- IV. Invariants of coadjoint representation of the Virasoro group.- 1. Monodromy operator as a conjugation class of $$\widetilde {SL}(2,R)$$.- 2. Classification theorem.- V. Extension of the Lie algebra of first order linear differential operators on S1 and matrix analogue of the Sturm-Liouville operator.- 1. Lie algebra of first order differential operators on S1 and its central extensions.- 2. Matrix Sturm-Liouville operators.- 3. Action of Lie algebra of differential operators.- 4. Generalized Neveu-Schwarz superalgebra.- VI. Geometrical definition of the Gelfand-Dickey bracket and the relation to the Moyal-Weil star-product.- 1. Moyal-Weyl star-product.- 2. Moyal-Weyl star-product on tensor-densities, the transvectants.- 3. Space of third order linear differential operators as a Diff+(S1)-module.- 4. Second order Lie derivative.- 5. Adler-Gelfand-Dickey Poisson structure.- References.- From Group Actions to Determinant Bundles Using (Heat-kernel) Renormalization Techniques.- I. Renormalization techniques.- 1. Renormalized limits.- 2. Renormalization procedures.- 3. Heat-kernel renormalization procedures.- 4. Renormalized determinants.- II. The first Chern form on a class of hermitian vector bundles.- 1. Renormalization procedures on vector bundles.- 2. Weighted first Chern forms on infinite dimensional vector bundles.- III. The geometry of gauge orbits.- 1. The finite dimensional setting.- 2. The infinite dimensional setting.- IV. The geometry of determinant bundles.- 1. Determinant bundles.- 2. A metric on the determinant bundle.- 3. A connection on the determinant bundle.- 4. Curvature on the determinant bundle.- V. An example: the action of diffeomorphisms on complex structures.- 1. The orbit picture.- 2. Riemannian structures.- 3. A super vector bundle arising from the group action.- 4. The determinant bundle picture.- 5. First Chern form on the vector bundle.- References.- Fermionic Second Quantization and the Geometry of the Restricted Grassmannian.- I. Fermionic second quantization.- 1. The Dirac equation and the negative energy problem.- 2. Fermionic multiparticle formalism: Fock space and the CAR-algebra.- II. Bogoliubov transformations and the Schwinger term.- 1. Implementation of operators on the Fock space.- 2. The Schwinger term.- 3. The central extensions Ures~ and GLres~.- III. The restricted Grassmannian of a polarized Hilbert space.- 1. The restricted Grassmannian as a homogeneous complex manifold.- 2. The basic differential geometry of the restricted Grassmannian.- IV. The non-equivariant moment map of the restricted Grassmannian.- 1. Differential k-forms in infinite dimensions.- 2. Symplectic manifolds, group actions and the co-moment map.- 3. Co-momentum and momentum maps (in infinite dimensions).- 4. Examples of symplectic actions and (co-)momementum maps.- 5. The Ures-moment map on Gres and the Schwinger term.- V. The determinant line bundle on the restricted Grassmannian.- 1. The C*-algebraic construction of the determinant bundle DET.- 2. Comparison to other approaches to the determinant bundle.- 3. Holomorphic sections of the dual of DET.- References.