Information Bounds and Nonparametric Maximum Likelihood Estimation
Band 19

Information Bounds and Nonparametric Maximum Likelihood Estimation

Aus der Reihe

Fr. 72.90

inkl. gesetzl. MwSt.

Information Bounds and Nonparametric Maximum Likelihood Estimation

Ebenfalls verfügbar als:

Taschenbuch

Taschenbuch

ab Fr. 72.90
eBook

eBook

ab Fr. 62.90

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

31.07.1992

Verlag

Springer Basel

Seitenzahl

128

Maße (L/B/H)

24.4/17/0.8 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

31.07.1992

Verlag

Springer Basel

Seitenzahl

128

Maße (L/B/H)

24.4/17/0.8 cm

Gewicht

264 g

Auflage

1992

Sprache

Englisch

ISBN

978-3-7643-2794-1

Weitere Bände von Oberwolfach Seminars

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Information Bounds and Nonparametric Maximum Likelihood Estimation
  • I. Information Bounds.- 1 Models, scores, and tangent spaces.- 1.1 Introduction.- 1.2 Models P.- 1.3 Scores: Differentiability of the Model.- 1.4 Tangent Sets P0 and Tangent Spaces P.- 1.5 Score Operators.- 1.6 Exercises.- 2 Convolution and asymptotic minimax theorems.- 2.1 Introduction.- 2.2 Finite-dimensional Parameter Spaces.- 2.3 Infinite-dimensional Parameter Spaces.- 2.4 Exercises.- 3 Van der Vaart’s Differentiability Theorem.- 3.1 Differentiability of Implicitly Defined Functions.- 3.2 Some Applications of the Differentiability Theorem.- 3.3 Exercises.- II. Nonparametric Maximum Likelihood Estimation.- 1 The interval censoring problem.- 1.1 Characterization of the non-parametric maximum likelihood estimators.- 1.2Exercises.- 2 The deconvolution problem.- 2.1 Decreasing densities and non-negative random variables.- 2.2 Convolution with symmetric densities.- 2.3 Exercises.- 3 Algorithms.- 3.1 The EM algorithm.- 3.2 The iterative convex minorant algorithm.- 3.3 Exercises.- 4 Consistency.- 4.1 Interval censoring, Case 1.- 4.2 Convolution with a symmetric density.- 4.3 Interval censoring, Case 2.- 4.4 Exercises.- 5 Distribution theory.- 5.1 Interval censoring, Case 1.- 5.2 Interval censoring, Case 2.- 5.3 Deconvolution with a decreasing density.- 5.4 Estimation of the mean.- 5.5 Exercises.- References.