Spectral Theory of Canonical Differential Systems. Method of Operator Identities
Band 107

Spectral Theory of Canonical Differential Systems. Method of Operator Identities

Method of Operator Identities

Aus der Reihe

Fr. 168.00

inkl. gesetzl. MwSt.

Spectral Theory of Canonical Differential Systems. Method of Operator Identities

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 168.00
Taschenbuch

Taschenbuch

ab Fr. 137.00
eBook

eBook

ab Fr. 125.90

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.04.1999

Verlag

Springer Basel

Seitenzahl

202

Maße (L/B/H)

24.3/16.7/2.3 cm

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.04.1999

Verlag

Springer Basel

Seitenzahl

202

Maße (L/B/H)

24.3/16.7/2.3 cm

Gewicht

1050 g

Auflage

1999

Sprache

Englisch

ISBN

978-3-7643-6057-3

Weitere Bände von Operator Theory: Advances and Applications

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Spectral Theory of Canonical Differential Systems. Method of Operator Identities
  • 1 Factorization of Operator-valued Transfer Functions.- 1.1 Realization of operator-valued functions.- 1.2 A factorization method.- 1.3 Factorization of rational operator-valued functions.- 2 Operator Identities and S-Nodes.- 2.1 Elementary properties of S-nodes.- 2.2 Symmetric S-nodes.- 2.3 Inherited properties of factors.- 3 Continual Factorization.- 3.1 The main continual factorization theorem.- 3.2 Bounded operator-valued functions.- 4 Spectral Problems on the Half-line.- 4.1 Basic notions of spectral theory.- 4.2 Direct and inverse spectral problems.- 4.3 Livšic-Brodski? nodes and the spectral theory of canonical systems.- 5 Spectral Problems on the Line.- 5.1 Spectral data of a canonical system.- 5.2 Spectral problems and S-nodes.- 5.3 The inverse spectral problem.- 6 Weyl-Titchmarsh Functions of Periodic Canonical Systems.- 6.1 Multipliers and their behavior.- 6.2 Weyl-Titchmarsh functions.- 6.3 Singular points of the Weyl-Titchmarsh matrix function.- 7 Division of Canonical Systems into Subclasses.- 7.1 An effective solution of the inverse problem.- 7.2 Two principles of dividing a class of canonical systems into subclasses.- 8 Uniqueness Theorems.- 8.1 Monodromy matrix and uniqueness theorems.- 8.2 Spectral data and uniqueness theorems.- 9 Weyl Discs and Points.- 9.1 Basic notions.- 9.2 Symmetric operators and deficiency indices.- 9.3 Weyl-Titchmarsh matrix functions on the line.- 9.4 Weyl-Titchmarsh matrix function of a system with shifted argument.- 10 A Class of Canonical Systems.- 10.1 Asymptotic formulas.- 10.2 Spectral analysis.- 10.3 Transformed canonical systems.- 10.4 Dirac-type systems.- 10.5 An inverse problem.- 10.6 On the limit Titchmarsh-Weyl function.- 11 Classical Spectral Problems.- 11.1 Generalized string equation (direct spectral problem).- 11.2 Matrix Sturm-Liouville equation (direct spectral problem).- 11.3 Inverse spectral problem.- 12 Nonlinear Integrable Equations and the Method of the Inverse Spectral Problem.- 12.1 Evolution of the spectral data.- 12.2 Some classical nonlinear equations.- 12.3 On the unique solvability of the mixed problem.- 12.4 A hierarchy of nonlinear equations and asymptotic behavior of Weyl-Titchmarsh functions.- Comments.- References.