Physics of High-Density Z-Pinch Plasmas

Physics of High-Density Z-Pinch Plasmas

Fr. 137.00

inkl. gesetzl. MwSt.

Physics of High-Density Z-Pinch Plasmas

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 137.00
Taschenbuch

Taschenbuch

ab Fr. 137.00
eBook

eBook

ab Fr. 125.90

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

21.05.1999

Verlag

Springer Us

Seitenzahl

277

Maße (L/B/H)

23.5/15.5/2.1 cm

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

21.05.1999

Verlag

Springer Us

Seitenzahl

277

Maße (L/B/H)

23.5/15.5/2.1 cm

Gewicht

606 g

Auflage

1999

Sprache

Englisch

ISBN

978-0-387-98568-8

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Physics of High-Density Z-Pinch Plasmas
  • 1. Introduction.- 1.1. An historical perspective.- 1.2. Characteristics of modern Z-pinch systems.- 1.3. The various types of Z pinches.- 1.4. Pulsed-power drivers.- 2. Equilibria of Z-Pinch Plasmas.- 2.1. Steady-state equilibria of Z-pinch plasmas.- 2.2. Equilibria of radiating Z pinches.- 3. Dynamics of Z-Pinch Plasmas.- 3.1. Formation of Z-pinch plasmas: Theoretical modeling.- 3.2. Zero-dimensional models of dynamic Z pinches.- 3.3. Fluid models of Z-pinch plasmas.- 3.4. Self-similar dynamics of an ideal MHD Z pinch.- 3.5. Self-similar solutions for time-dependent Z-pinch equilibria.- 4. Stability of Z-Pinch Plasmas.- 4.1. The stability of steady-state Z pinches.- 4.2. Effect of ohmic heating and radiative losses: Overheating instability and filamentation.- 4.3. Resistive and viscous effects on Z-pinch stability: Heat conductivity.- 4.4. Effects of finite and large ion Larmor radius: The Hall effect.- 4.5. Kinetic effects.- 4.6. Nonlinear evolution of the m = 0 mode.- 5. Rayleigh—Taylor Instability of a Plasma Accelerated by Magnetic Pressure.- 5.1. Rayleigh—Taylor instabilities of dynamic plasmas.- 5.2. Ideal MHD model: The Rayleigh—Taylor instability modes.- 5.3. Ideal MHD model: Effects of plasma compressibility and magnetic shear.- 5.4. Effect of magnetic shear.- 5.5. Dissipative effects.- 5.6. Large Larmor-radius effects.- 5.7. Nonlinear evolution of the Rayleigh—Taylor instability.- 6. Stability of Dynamic Z-Pinches and Liners.- 6.1. The thin-shell model.- 6.2. Growth of the RT instabilities in a layer of finite thickness.- 6.3. Rayleigh—Taylor instabilities in an imploding Z pinch: The snowplow model.- 6.4. Imploding wire arrays.- 6.5. Ideal MHD model.- 6.6. Stability of gas-puff Z-pinch implosions.- 6.7. Stabilization of long-wavelength sausage and kink modes of a Z pinch by radial oscillations.- 6.9. Two-dimensional simulation of magnetically driven.- Rayleigh—Taylor instabilities in cylindrical Z pinches.- 7. Applications of Z Pinches.- 7.1. Controlled nuclear fusion.- 7.2. Z pinches as sources of x-ray and neutron radiation.- 7.3. X-ray laser.- 7.4. Production of ultrahigh pulsed-magnetic fields.- 7.5. Focusing high-energy particles in an accelerator.- Conclusions.- References.