Elementary Lectures in Statistical Mechanics

Elementary Lectures in Statistical Mechanics

Aus der Reihe

Fr. 72.90

inkl. gesetzl. MwSt.

Elementary Lectures in Statistical Mechanics

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 72.90
Taschenbuch

Taschenbuch

ab Fr. 72.90
eBook

eBook

ab Fr. 62.90

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

28.12.1999

Verlag

Springer Us

Seitenzahl

431

Maße (L/B/H)

23.5/15.5/3 cm

Beschreibung

Rezension

FROM THE REVIEWS:


MATHEMATICAL REVIEWS

"Critical depth and vivid presentation of concepts are the best qualities of this textbook, which can be recommended for an introductory course in statistical mechanics…”

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

28.12.1999

Verlag

Springer Us

Seitenzahl

431

Maße (L/B/H)

23.5/15.5/3 cm

Gewicht

840 g

Auflage

2000

Sprache

Englisch

ISBN

978-0-387-98918-1

Weitere Bände von Graduate Texts in Contemporary Physics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Elementary Lectures in Statistical Mechanics
  • I Fundamentals: Separable Classical Systems.- Lecture 1. Introduction.- 1.1 Historical Perspective.- 1.2 Basic Principles.- 1.3 Author’s Self-Defense.- 1.4 Other Readings.- References.- Lecture 2. Averaging and Statistics.- 2.1 Examples of Averages.- 2.2 Formal Averages.- 2.3 Probability and Statistical Weights.- 2.4 Meaning and Characterization of Statistical Weights.- 2.5 Ideal Time and Ensemble Averages.- 2.6 Summary.- Problems.- References.- Lecture 3. Ensembles: Fundamental Principles of Statistical Mechanics.- 3.1 Ensembles.- 3.2 The Canonical Ensemble.- 3.3 Other Ensembles.- 3.4 Notation and Terminology: Phase Space.- 3.5 Summary.- Problems.- References.- Lecture 4. The One-Atom Ideal Gas.- 4.1 The Classical One-Atom Ensemble.- 4.2 The Average Energy.- 4.3 Mean-Square Energy.- 4.4 The Maxwell-Boltzmann Distribution.- 4.5 Reduced Distribution Functions.- 4.6 Density of States.- 4.7 Canonical and Representative Ensembles.- 4.8 Summary.- Problems.- References.- Aside A. The Two-Atom Ideal Gas.- A.1 Setting Up the Problem.- A.2 Average Energy.- A.3 Summary.- Problems.- Lecture 5. N-Atom Ideal Gas.- 5.1 Ensemble Average for N-Atom Systems.- 5.2 Ensemble Averages of E and E2.- 5.3 Fluctuations and Measurements in Large Systems.- 5.4 Potential Energy Fluctuations.- 5.5 Counting States.- 5.6 Summary.- Problems.- References.- Lecture 6. Pressure of an Ideal Gas.- 6.1 P from a Canonical Ensemble Average.- 6.2 P from the Partition Function.- 6.3 P from the Kinetic Theory of Gases.- 6.4 Remarks.- Problems.- References.- Aside B. How Do Thermometers Work—The Polythermal Ensemble.- B.1 Introduction.- B.2 The Polythermal Ensemble.- B.3 Discussion.- Problems.- References.- Lecture 7. Formal Manipulations of the Partition Function.- 7.1 The Equipartition Theorem.- 7.2 First Generalized Equipartition Theorem.- 7.3 Second Generalized Equipartition Theorem.- 7.4 Additional Tests; Clarification of the Equipartition Theorems.- 7.5 Parametric Derivatives of the Ensemble Average.- 7.6 Summary.- Problems.- References.- Aside C. Gibbs’s Derivation of.- References.- Lecture 8. Entropy.- 8.1 The Gibbs Form for the Entropy.- 8.2 Special Cases.- 8.3 Discussion.- Problems.- References.- Lecture 9. Open Systems; Grand Canonical Ensemble.- 9.1 The Grand Canonical Ensemble.- 9.2 Fluctuations in the Grand Canonical Ensemble.- 9.3 Discussion.- Problems.- References.- II Separable Quantum Systems.- Lecture 10. The Diatomic Gas and Other Separable Quantum Systems.- 10.1 Partition Functions for Separable Systems.- 10.2 Classical Diatomic Molecules.- 10.3 Quantization of Rotational and Vibrational Modes.- 10.4 Spin Systems.- 10.5 Summary.- Problems.- References.- Lecture 11. Crystalline Solids.- 11.1 Classical Model of a Solid.- 11.2 Einstein Model.- 11.3 Debye Model.- 11.4 Summary.- Problems.- References.- Aside D. Quantum Mechanics.- D.1 Basic Principles of Quantum Mechanics.- D.2 Summary.- Problems.- References.- Lecture 12. Formal Quantum Statistical Mechanics.- 12.1 Choice of Basis Vectors.- 12.2 Replacement of Sums over All States with Sums over Eigenstates.- 12.3 Quantum Effects on Classical Integrals.- 12.4 Summary.- Problems.- References.- Lecture 13. Quantum Statistics.- 13.1 Introduction.- 13.2 Particles Whose Number Is Conserved.- 13.3 Noninteracting Fermi-Dirac Particles.- 13.4 Photons.- 13.5 Historical Aside: What Did Planck Do—.- 13.6 Low-Density Limit.- Problems.- References.- Aside E. Kirkwood-Wigner Theorem.- E.1 Momentum Eigenstate Expansion.- E.2 Discussion.- Problems.- References.- Lecture 14. Chemical Equilibria.- 14.1 Conditions for Chemical Equilibrium.- 14.2 Equilibrium Constants of Dilute Species from Partition Functions.- 14.3 Discussion.- Problems.- References.- III Interacting Particles and Cluster Expansions.- Lecture 15. Interacting Particles.- 15.1 Potential Energies; Simple Fluids.- 15.2 Simple Reductions; Convergence.- 15.3 Discussion.- Problems.- References.- Lecture 16. Cluster Expansions.- 16.1 Search for an Approach.- 16.2 An Approximant.- 16.3 Flaws of the Approximant.- 16.4 Approximant as a Motivator of Better Approaches.- Problems.- References.- Lecture 17. ? via the Grand Canonical Ensemble.- 17.1 ? and the Density.- 17.2 Expansion for P in Powers of z or ?.- 17.3 Graphical Notation.- 17.4 The Pressure.- 17.5 Summary.- Problems.- References.- Lecture 18. Evaluating Cluster Integrals.- 18.1 B2; Special Cases.- 18.2 More General Techniques.- 18.3 g-Bonds.- 18.4 The Law of Corresponding States.- 18.5 Summary.- Problems.- References.- Lecture 19. Distribution Functions.- 19.1 Motivation for Distribution Functions.- 19.2 Definition of the Distribution Function.- 19.3 Applications of Distribution Functions.- 19.4 Remarks.- 19.5 Summary.- Problems.- Lecture 20. More Distribution Functions.- 20.1 Introduction.- 20.2 Chemical Potential.- 20.3 Charging Processes.- 20.4 Summary.- Problems.- References.- Lecture 21. Electrolyte Solutions, Plasmas, and Screening.- 21.1 Introduction.- 21.2 The Debye-Huckel Model.- 21.3 Discussion.- Problems.- References.- IV Correlation Functions and Dynamics.- Lecture 22. Correlation Functions.- 22.1 Introduction; Correlation Functions.- 22.2 The Density Operator: Examples of Static Correlation Functions.- 22.3 Evaluation of Correlation Functions via Symmetry: Translational Invariance.- 22.4 Correlation Functions of Vectors and Pseudovectors; Other Symmetries.- 22.5 Discussion and Summary.- Problems.- References.- Lecture 23. Stability of the Canonical Ensemble.- 23.1 Introduction.- 23.2 Time Evolution: Temporal Stability of the Canonical Ensemble.- 23.3 Application of the Canonical Ensemble Stability Theorem.- 23.4 Time Correlation Functions.- 23.5 Discussion.- Problems.- References.- Aside F. The Central Limit Theorem.- F.1 Derivation of the Central Limit Theorem.- F.2 Implications of the Central Limit Theorem.- F.3 Summary.- Problems.- References.- Lecture 24. The Langevin Equation.- 24.1 The Langevin Model for Brownian Motion.- 24.2 A Fluctuation-Dissipation Theorem on the Langevin Equation.- 24.3 Mean-Square Displacement of a Brownian Particle.- 24.4 Cross Correlation of Successive Langevin Steps.- 24.5 Application of the Central Limit Theorem to the Langevin Model.- 24.6 Summary.- Problems.- References.- Lecture 25. The Langevin Model and Diffusion.- 25.1 Necessity of the Assumptions Resulting in the Langevin Model.- 25.2 The Einstein Diffusion Equation: A Macroscopic Result.- 25.3 Diffusion in Concentrated Solutions.- 25.4 Summary.- Problems.- References.- Lecture 26. Projection Operators and the Mori-Zwanzig Formalism.- 26.1 Time Evolution of Phase Points via the Liouville Operator.- 26.2 Projection Operators.- 26.3 The Mori-Zwanzig Formalism.- 26.4 Asides on the Mori-Zwanzig Formalism.- Problems.- References.- Lecture 27. Linear Response Theory.- 27.1 Introduction.- 27.2 Linear Response Theory.- 27.3 Electrical Conductivity.- 27.4 Discussion.- Problems.- References.- V A Research Problem.- Aside G. Scattering of Light, Neutrons, X-Rays, and Other Radiation.- G.1 Introduction.- G.2 Scattering Apparatus; Properties of Light.- G.3 Time Correlation Functions.- Problems.- References.- Lecture 28. Diffusion of Interacting Particles.- 28.1 Why Should We Care About this Research Problem—.- 28.2 What Shall We Calculate—.- 28.3 Model for Particle Dynamics.- 28.4 First Cumulant for g(1)(k, t).- 28.5 Summary.- Problems.- References.- Lecture 29. Interacting Particle Effects.- 29.1 Reduction to Radial Distribution Functions.- 29.2 Numerical Values for K1 and K1s.- 29.3 Discussion.- Problems.- References.- Lecture 30. Hidden Correlations.- 30.1 Model-Independent Results.- 30.2 Evaluation of the Derivatives.- 30.3 Resolution of the Anomaly.- 30.4 Discussion.- Problems.- References.