• Produktbild: Fusion Bonding of Polymer Composites
  • Produktbild: Fusion Bonding of Polymer Composites

Fusion Bonding of Polymer Composites From Basic Mechanisms to Process Optimisation

Fr. 191.00

inkl. MwSt, Versandkostenfrei

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

29.05.2002

Verlag

Springer London

Seitenzahl

273

Maße (L/B/H)

23.5/15.5/2.2 cm

Gewicht

612 g

Auflage

2002

Sprache

Englisch

ISBN

978-1-85233-429-1

Beschreibung

Rezension

From the reviews:

"This book is the first volume in the Engineering Materials and Processes series … . the book would be an ideal reference for anyone wishing to fusion bond advanced polymer composites." (John Summerscales, Materials World, Vol. 11 (9), 2003)

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

29.05.2002

Verlag

Springer London

Seitenzahl

273

Maße (L/B/H)

23.5/15.5/2.2 cm

Gewicht

612 g

Auflage

2002

Sprache

Englisch

ISBN

978-1-85233-429-1

Herstelleradresse

Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
DE

Email: ProductSafety@springernature.com

Weitere Bände von Engineering Materials and Processes

Unsere Kundinnen und Kunden meinen

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0 Bewertungen filtern

  • Produktbild: Fusion Bonding of Polymer Composites
  • Produktbild: Fusion Bonding of Polymer Composites
  • 1. Introduction.- 1.1 Advanced Thermoplastic Matrix Composites (TMPCs).- 1.2 Joining Technology for Composite Materials.- 1.3 References.- 2. The State of the Art in Fusion Bonding of Polymer Composites.- 2.1 Introduction.- 2.2 Traditional Technologies.- 2.2.1 Mechanical Fastening.- 2.2.1.1 Bolted/Riveted Joints.- 2.2.1.2 Integral Fit Joint Technology.- 2.2.2 Adhesive Bonding.- 2.2.3 Solvent Bonding.- 2.3 Fusion Bonding Technology.- 2.3.1 Introduction.- 2.3.2 Fusion Bonding Techniques.- 2.3.2.1 Bulk Heating.- 2.3.2.2 Fractional Heating.- 2.3.2.3 Electromagnetic Heating.- 2.3.2.4 Two-stage Techniques.- 2.4 Joining of Dissimilar Materials.- 2.4.1 Introduction.- 2.4.2 Metal Substrates.- 2.4.2.1 Surface Preparation.- 2.4.2.2 Fusion Bonding of TPMCs and Metal Substrates.- 2.4.3 TSMC Substrates.- 2.4.3.1 TP Hybrid Interlayer.- 2.4.3.2 TP Film Co-cure.- 2.5 Comparative Assessment.- 2.5.1 Joint Performance.- 2.5.1.1 Strength.- 2.5.1.2 Durability.- 2.5.2 Process Performance.- 2.5.2.1 Cost and Processing Time.- 2.5.2.2 Quality.- 2.5.2.3 Suitability to Automation/Production Environment.- 2.5.2.4 Minimal Surface Preparation.- 2.5.3 Process Adaptability.- 2.5.3.1 Flexibility.- 2.5.3.2 Large-scale Joining.- 2.5.3.3 Portability/Application to Repair.- 2.5.4 Environmental Aspects.- 2.5.4.1 Reprocessing/Recycling.- 2.5.4.2 Environmental Friendliness.- 2.6 Concluding Remarks.- 2.7 References.- 3. Heat Transfer in Fusion Bonding.- 3.1 Introduction.- 3.2 Heat Generation.- 3.2.1 Ultrasonic Welding.- 3.2.2 Induction Welding.- 3.2.3 Resistance Welding.- 3.2.3.1 Joule Heating.- 3.2.3.2 IRW.- 3.3 Heat Transfer.- 3.3.1 Modelling the Geometry through the FEM.- 3.3.2 Heat Transfer Theory.- 3.3.3 Modelling of Interfaces Between Plies.- 3.3.4 Non-uniform Heating.- 3.3.5 Improvement of Heat Transfer in Penetration Area.- 3.4 Modelling Thermal Degradation.- 3.4.1 Approximation of Thermal Degradation.- 3.4.2 Thermal Degradation Kinetic Model.- 3.5 Aspects Influencing Heat Transfer in Resistance Welding.- 3.5.1 Material Properties.- 3.5.2 Basic Results for Heat Transfer.- 3.5.3 Effect of Latent Heat.- 3.5.4 Effect of Rough Contact Surfaces.- 3.5.5 Non-uniform Heat Generation in Resistance Welding.- 3.6 Simulations of Resistance Welding.- 3.6.1 Temperature Uniformity in Welding Interface.- 3.6.2 Processing Windows.- 3.6.3 Heat Transfer to Laminate.- 3.6.4 IRW.- 3.6.4.1 In-air HE.- 3.6.4.2 Embedded HE.- 3.7 Concluding Remarks.- 3.8 References.- 4. Consolidation Mechanisms.- 4.1 Introduction.- 4.2 Basic Mechanisms for Fusion Bonding.- 4.2.1 Consolidation Mechanisms.- 4.2.2 Intimate Contact Model.- 4.2.3 Autohesion Model.- 4.2.4 Non-isothermal Bonding Process.- 4.3 Simulations of Consolidation for Resistance Welding.- 4.3.1 Material Properties.- 4.3.2 Effect of Surface Roughness on Intimate Contact.- 4.3.3 Processing Windows.- 4.3.4 Effect of Consolidation Pressure on Intimate Contact.- 4.3.5 IRW.- 4.3.5.1 Simulations of Consolidation.- 4.3.5.2 Comparison with Experimental Data.- 4.4 De-consolidation Phenomenon.- 4.5 Concluding Remarks.- 4.6 References.- 5. Crystallisation Kinetics.- 5.1 Introduction.- 5.2 Description of Crystallisation Kinetics and Crystal Melting Kinetics Models.- 5.2.1 Ozawa's Crystallisation Kinetics Model.- 5.2.2 Velisaris and Seferis' Crystallisation Kinetics Model.- 5.2.3 The Choe and Lee Crystallisation Kinetics Model.- 5.2.4 Icenogle's Crystallisation Kinetics Model.- 5.2.5 The Maffezzoli et al. Crystal Melting Kinetics Model.- 5.3 A Transient Crystallinity Model for Resistance Welding.- 5.4 Simulations of the Crystallinity Level.- 5.4.1 Crystallisation Kinetics.- 5.4.2 Crystallisation Kinetics Coupled with Crystal Melting Kinetics....- 5.4.3 Influence of Environmental Temperature.- 5.4.4 Influence of Latent Heat of Crystallisation and Crystal Melting....- 5.4.5 Evaluation of the CF-PP/PP Welding Configuration.- 5.5 Concluding Remarks.- 5.6 References.- 6. Processing-Microstructure-Property Relationship.- 6.1 Introduction.- 6.2 Experimental Techniques.- 6.2.1 Laminates.- 6.2.2 HEs.- 6.2.3 Resistance Welding.- 6.2.4 Temperature Measurements.- 6.2.5 Modelling.- 6.3 Assessing Parent Materials Properties.- 6.4 Heat Generation and Heat Transfer.- 6.4.1 Resistance of HE.- 6.4.1.1 Measurement of Resistance.- 6.4.1.2 Dependency of Resistance of HE on Temperature.- 6.4.1.3 Influence of Clamping Force on Electrical Contact Efficiency.- 6.4.2 Determination of Power Density.- 6.4.3 Efficiency of CF HEs.- 6.4.4 Temperature Measurements in LS Coupons.- 6.4.5 Comparison with FEM Predictions.- 6.5 Determination of Processing Windows.- 6.5.1 Optimised Welding Times.- 6.5.2 Welding Curves and Thickness Reduction.- 6.5.3 Welding Pressure and Consolidation Quality.- 6.5.4 Failure Mechanisms.- 6.5.5 Processing Window.- 6.5.6 Fabric HEs.- 6.6 Concluding Remarks.- 6.7 References.- 7. Full-scale Fusion Bonding.- 7.1 Introduction.- 7.2 Strategies for Transition to Large-scale Fusion Bonding.- 7.2.1 Ultrasonic Welding.- 7.2.2 Induction Welding.- 7.2.3 Resistance Welding.- 7.3 Large-scale Resistance Welding.- 7.3.1 Current Leakage to Laminate.- 7.3.2 Heat Transfer in Welding Stack.- 7.3.3 Large Width LS Coupons.- 7.3.4 DCB Coupons.- 7.4 Concluding Remarks.- 7.5 References.- 8. Fusion Bonding of TSMC/TPMC Joints.- 8.1 Introduction.- 8.2 Experimental.- 8.3 TP Hybrid Interlayer.- 8.4 Modelling.- 8.5 Characterisation of CF-Epoxy/CF-PEI Joints.- 8.5.1 Consolidation and Microstructure.- 8.5.2 Failure Mechanisms.- 8.5.3 Simulated Results.- 8.5.4 Optimisation of the Processing Windows.- 8.6 Concluding Remarks.- 8.7 References.- 9. Fusion Bonding of Metal/TPMC Joints.- 9.1 Introduction.- 9.2 Experimental.- 9.3 Simulation of Resistance Welding of Aluminium/CF-PEI LS Joints.- 9.3.1 FEM.- 9.3.2 Simulation of Temperature and Welding Times.- 9.4 Characterisation of Aluminium/CF-PEI LS Joints.- 9.4.1 Consolidation and Microstructure.- 9.4.2 Failure Mechanisms.- 9.4.3 Annealing of Aluminium Substrates.- 9.4.4 Optimisation of the Processing Window.- 9.5 Concluding Remarks.- 9.6 References.- Appendix A. Material Properties for Simulations.- Appendix B. Parameters for Crystallisation and Crystal Melting Kinetics Models.- Appendix C. Thermal Degradation Kinetic Model.- C.I Thermal Degradation Model for CF-epoxy Composite.- C.2 Thermal Degradation Model for PEI.- C.3 Thermal Degradation Model for PEEK.- C.4 References.