Netlab

Netlab

Algorithms for Pattern Recognition

Aus der Reihe

Fr. 101.00

inkl. gesetzl. MwSt.

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

25.10.2001

Verlag

Springer London

Seitenzahl

420

Maße (L/B/H)

23.5/15.5/2.4 cm

Beschreibung

Rezension

From the reviews:

"...provides a unique collection of many of the most important pattern recognition algorithms. With its use of compact and easily modified MATLAB scripts, the book is ideally suited to both teaching and research."

Christopher Bishop, Microsoft Research, Cambridge, UK

"...a welcome addition to the literature on neural networks and how to train and use them to solve many of the statistical problems that occur in data analysis and data mining."

Jack Cowan, Mathematics Department, University of Chicago, US

"If you have a pattern recognition problem, you should consider NETLAB; if you use NETLAB you must have this book." Keith Worden, University of Sheffield, UK

"Breezing through the elementary algorithms, Nabney takes readers on a tour of the more sophisticated approaches used by real practitioners. ... It is an invaluable resource for the serious student of neural networks."

David S. Touretzky, Computer Science Department, Carnegie Mellon University, US

"Anyone who intends to use Matlab for pattern recognition and related neural computing applications will benefit from this book. It provides a valuable insight into the methods used within the NETLAB toolbox and serves as a useful reference."

Steve King, Strategic Research Centre, Rolls-Royce plc., UK

"The book aims to provide readers with the knowledge and tools to get the most out of neural networks … . A series of worked examples and illustrative demonstration programs are also supplied helping the reader to understand the algorithms … . The book provides an excellent collection of the most important algorithms in pattern recognition. The book can be used as a textbook for teaching undergraduate and postgraduate courses in pattern recognition but it also proves extremely worthy to practitioners and researchers … ." (Luminita State, Zentralblatt MATH, Vol. 1011, 2003)

"In this book, Ian Nabney provides awell-organized description of NETLAB along with plenty of demonstration programs, worked examples and exercises. … Throughout the book, the author strictly follows a uniform style in each chapter. … I think the unification of the style can increase the readability of the book. … The most benefited readers may be the researchers in the same area. Through this book, they can easily find the algorithms they are interested in and use the algorithms for their own purpose." (Lu Zhang, Expert Update, Vol. 5 (3), 2002)

“The book is solely dedicated to explaining the theoretical background of … NETLAB. … mainly presents the algorithms of the functions, their MATLAB program, the formulas used and the required inputs from the users in order to use the functions. … an excellent list of references is included at the end of the book. … useful as an illustrative reference when used with the actual software, but also containing enough scientific explanations and theory to be considered a good reference book alone.” (Eleazar Jimenez Serrano, IAPR Newsletter, January, 2011)

Details

Einband

Taschenbuch

Erscheinungsdatum

25.10.2001

Verlag

Springer London

Seitenzahl

420

Maße (L/B/H)

23.5/15.5/2.4 cm

Gewicht

663 g

Auflage

2002

Sprache

Englisch

ISBN

978-1-85233-440-6

Weitere Bände von Advances in Computer Vision and Pattern Recognition

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Netlab
  • Introduction.- Parameter Optimisation Algorithms.- Density Modelling and Clustering.- Single-Layer Networks.- The Multi-Layer Perceptron.- Radial Basis Functions.- Visualisation and Latent Variable Models.- Sampling.- Bayesian Techniques.- Gaussian Processes.- Linear Algebra and Matrices.- Algorithm Error Analysis.- Function Index.- Subject Index.