Bayesian Learning for Neural Networks
Band 118

Bayesian Learning for Neural Networks

Aus der Reihe

Fr. 209.00

inkl. gesetzl. MwSt.

Bayesian Learning for Neural Networks

Ebenfalls verfügbar als:

Taschenbuch

Taschenbuch

ab Fr. 209.00
eBook

eBook

ab Fr. 213.90

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

09.08.1996

Verlag

Springer Us

Seitenzahl

204

Maße (L/B/H)

23.5/15.5/1.2 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

09.08.1996

Verlag

Springer Us

Seitenzahl

204

Maße (L/B/H)

23.5/15.5/1.2 cm

Gewicht

318 g

Auflage

1996

Sprache

Englisch

ISBN

978-0-387-94724-2

Weitere Bände von Lecture Notes in Statistics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Bayesian Learning for Neural Networks
  • 1 Introduction.- 1.1 Bayesian and frequentist views of learning.- 1.2 Bayesian neural networks.- 1.3 Markov chain Monte Carlo methods.- 1.4 Outline of the remainder of the book.- 2 Priors for Infinite Networks.- 2.1 Priors converging to Gaussian processes.- 2.2 Priors converging to non-Gaussian stable processes.- 2.3 Priors for nets with more than one hidden layer.- 2.4 Hierarchical models.- 3 Monte Carlo Implementation.- 3.1 The hybrid Monte Carlo algorithm.- 3.2 An implementation of Bayesian neural network learning.- 3.3 A demonstration of the hybrid Monte Carlo implementation.- 3.4 Comparison of hybrid Monte Carlo with other methods.- 3.5 Variants of hybrid Monte Carlo.- 4 Evaluation of Neural Network Models.- 4.1 Network architectures, priors, and training procedures.- 4.2 Tests of the behaviour of large networks.- 4.3 Tests of Automatic Relevance Determination.- 4.4 Tests of Bayesian models on real data sets.- 5 Conclusions and Further Work.- 5.1 Priors for complex models.- 5.2 Hierarchical Models — ARD and beyond.- 5.3 Implementation using hybrid Monte Carlo.- 5.4 Evaluating performance on realistic problems.- A Details of the Implementation.- A.1 Specifications.- A.1.1 Network architecture.- A.1.2 Data models.- A.1.3 Prior distributions for parameters and hyperparameters.- A.1.4 Scaling of priors.- A.2 Conditional distributions for hyperparameters.- A.2.1 Lowest-level conditional distributions.- A.2.2 Higher-level conditional distributions.- A.3 Calculation of derivatives.- A.3.1 Derivatives of the log prior density.- A.3.2 Log likelihood derivatives with respect to unit values.- A.3.3 Log likelihood derivatives with respect to parameters.- A.4 Heuristic choice of stepsizes.- A.5 Rejection sampling from the prior.- B Obtaining the software.