Applications of Lie Groups to Differential Equations
Band 107

Applications of Lie Groups to Differential Equations

differential equations

Aus der Reihe

Applications of Lie Groups to Differential Equations

Ebenfalls verfügbar als:

Taschenbuch

Taschenbuch

ab Fr. 71.90
eBook

eBook

ab Fr. 79.90

Fr. 71.90

inkl. MwSt, Versandkostenfrei

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

21.01.2000

Verlag

Springer Us

Seitenzahl

513

Maße (L/B/H)

23.5/15.5/2.9 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

21.01.2000

Verlag

Springer Us

Seitenzahl

513

Maße (L/B/H)

23.5/15.5/2.9 cm

Gewicht

820 g

Auflage

2nd ed. 1993. 3rd printing 2000

Sprache

Englisch

ISBN

978-0-387-95000-6

Weitere Bände von Graduate Texts in Mathematics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Applications of Lie Groups to Differential Equations
  • 1 Introduction to Lie Groups.- 1.1. Manifolds.- Change of Coordinates.- Maps Between Manifolds.- The Maximal Rank Condition.- Submanifolds.- Regular Submanifolds.- Implicit Submanifolds.- Curves and Connectedness.- 1.2. Lie Groups.- Lie Subgroups.- Local Lie Groups.- Local Transformation Groups.- Orbits.- 1.3. Vector Fields.- Flows.- Action on Functions.- Differentials.- Lie Brackets.- Tangent Spaces and Vectors Fields on Submanifolds.- Frobenius’ Theorem.- 1.4. Lie Algebras.- One-Parameter Subgroups.- Subalgebras.- The Exponential Map.- Lie Algebras of Local Lie Groups.- Structure Constants.- Commutator Tables.- Infinitesimal Group Actions.- 1.5. Differential Forms.- Pull-Back and Change of Coordinates.- Interior Products.- The Differential.- The de Rham Complex.- Lie Derivatives.- Homotopy Operators.- Integration and Stokes’ Theorem.- Notes.- Exercises.- 2 Symmetry Groups of Differential Equations.- 2.1. Symmetries of Algebraic Equations.- Invariant Subsets.- Invariant Functions.- Infinitesimal Invariance.- Local Invariance.- Invariants and Functional Dependence.- Methods for Constructing Invariants.- 2.2. Groups and Differential Equations.- 2.3. Prolongation.- Systems of Differential Equations.- Prolongation of Group Actions.- Invariance of Differential Equations.- Prolongation of Vector Fields.- Infinitesimal Invariance.- The Prolongation Formula.- Total Derivatives.- The General Prolongation Formula.- Properties of Prolonged Vector Fields.- Characteristics of Symmetries.- 2.4. Calculation of Symmetry Groups.- 2.5. Integration of Ordinary Differential Equations.- First Order Equations.- Higher Order Equations.- Differential Invariants.- Multi-parameter Symmetry Groups.- Solvable Groups.- Systems of Ordinary Differential Equations.- 2.6. Nondegeneracy Conditions for Differential Equations.- Local Solvability.- In variance Criteria.- The Cauchy—Kovalevskaya Theorem.- Characteristics.- Normal Systems.- Prolongation of Differential Equations.- Notes.- Exercises.- 3 Group-Invariant Solutions.- 3.1. Construction of Group-Invariant Solutions.- 3.2. Examples of Group-Invariant Solutions.- 3.3. Classification of Group-Invariant Solutions.- The Adjoint Representation.- Classification of Subgroups and Subalgebras.- Classification of Group-Invariant Solutions.- 3.4. Quotient Manifolds.- Dimensional Analysis.- 3.5. Group-Invariant Prolongations and Reduction.- Extended Jet Bundles.- Differential Equations.- Group Actions.- The Invariant Jet Space.- Connection with the Quotient Manifold.- The Reduced Equation.- Local Coordinates.- Notes.- Exercises.- 4 Symmetry Groups and Conservation Laws.- 4.1. The Calculus of Variations.- The Variational Derivative.- Null Lagrangians and Divergences.- Invariance of the Euler Operator.- 4.2. Variational Symmetries.- Infinitesimal Criterion of Invariance.- Symmetries of the Euler—Lagrange Equations.- Reduction of Order.- 4.3. Conservation Laws.- Trivial Conservation Laws.- Characteristics of Conservation Laws.- 4.4. Noether’s Theorem.- Divergence Symmetries.- Notes.- Exercises.- 5 Generalized Symmetries.- 5.1. Generalized Symmetries of Differential Equations.- Differential Functions.- Generalized Vector Fields.- Evolutionary Vector Fields.- Equivalence and Trivial Symmetries.- Computation of Generalized Symmetries.- Group Transformations.- Symmetries and Prolongations.- The Lie Bracket.- Evolution Equations.- 5.2. Récursion Operators, Master Symmetries and Formal Symmetries.- Frechet Derivatives.- Lie Derivatives of Differential Operators.- Criteria for Recursion Operators.- The Korteweg—de Vries Equation.- Master Symmetries.- Pseudo-differential Operators.- Formal Symmetries.- 5.3. Generalized Symmetries and Conservation Laws.- Adjoints of Differential Operators.- Characteristics of Conservation Laws.- Variational Symmetries.- Group Transformations.- Noether’s Theorem.- Self-adjoint Linear Systems.- Action of Symmetries on Conservation Laws.- Abnormal Systems and Noether’s Second Theorem.- Formal Symmetries and Conservation Laws.- 5.4. The Variational Complex.- The D-Complex.- Vertical Forms.- Total Derivatives of Vertical Forms.- Functionals and Functional Forms.- The Variational Differential.- Higher Euler Operators.- The Total Homotopy Operator.- Notes.- Exercises.- 6 Finite-Dimensional Hamiltonian Systems.- 6.1. Poisson Brackets.- Hamiltonian Vector Fields.- The Structure Functions.- The Lie-Poisson Structure.- 6.2. Symplectic Structures and Foliations.- The Correspondence Between One-Forms and Vector Fields.- Rank of a Poisson Structure.- Symplectic Manifolds.- Maps Between Poisson Manifolds.- Poisson Submanifolds.- Darboux’ Theorem.- The Co-adjoint Representation.- 6.3. Symmetries, First Integrals and Reduction of Order.- First Integrals.- Hamiltonian Symmetry Groups.- Reduction of Order in Hamiltonian Systems.- Reduction Using Multi-parameter Groups.- Hamiltonian Transformation Groups.- The Momentum Map.- Notes.- Exercises.- 7 Hamiltonian Methods for Evolution Equations.- 7.1. Poisson Brackets.- The Jacobi Identity.- Functional Multi-vectors.- 7.2. Symmetries and Conservation Laws.- Distinguished Functionals.- Lie Brackets.- Conservation Laws.- 7.3. Bi-Hamiltonian Systems.- Recursion Operators.- Notes.- Exercises.- References.- Symbol Index.- Author Index.