Short Calculus

Short Calculus The Original Edition of “A First Course in Calculus”

Aus der Reihe

Short Calculus

Ebenfalls verfügbar als:

Taschenbuch

Taschenbuch

ab Fr. 58.90
eBook

eBook

ab Fr. 67.90

Fr. 58.90

inkl. MwSt, Versandkostenfrei

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

29.11.2001

Abbildungen

XII, w. mit 30 Illustrationen 23,5 cm

Verlag

Springer Us

Seitenzahl

260

Maße (L/B/H)

23.5/15.5/1.6 cm

Gewicht

459 g

Auflage

Reprint of the 1st ed. Addison-Wesley, 1964.

Sprache

Englisch

ISBN

978-0-387-95327-4

Beschreibung

Rezension

From the reviews:


"...Lang's present book is a source of interesting ideas and brilliant techniques."

Acta Scientarium Mathematicarum

"... It is an admirable straightforward introduction to calculus."

Mathematika


"A First Course in Calculus went through five editions since the early sixties. Now the original edition of A First Course in Calculus is available again. The approach is the one that was successful decades ago, involving clarity and adjusted to a time when the students’ background was not as substantial as it might have been. … The audience is intended to consist of those taking the first calculus course, in high school or college." (G. Kirlinger, Internationale Mathematische Nachrichten, Vol. 57 (193), 2003)


"This is a reprint of the original edition of Lang’s A first course in calculus, which was first published in 1964. … The treatment is ‘as rigorous as any mathematician would wish it’ … . There are quite a lot of exercises … they are refreshingly simply stated, without any extraneous verbiage, and at times quite challenging. … There are answers to all the exercises set and some supplementary problems on each topic to tax even the most able." (Gerry Leversha, The Mathematical Gazette, Vol. 86 (507), 2002)

Details

Einband

Taschenbuch

Erscheinungsdatum

29.11.2001

Abbildungen

XII, w. mit 30 Illustrationen 23,5 cm

Verlag

Springer Us

Seitenzahl

260

Maße (L/B/H)

23.5/15.5/1.6 cm

Gewicht

459 g

Auflage

Reprint of the 1st ed. Addison-Wesley, 1964.

Sprache

Englisch

ISBN

978-0-387-95327-4

Herstelleradresse

Springer US, New York, N.Y.
Heidelberger Platz 3
14197 Berlin
Deutschland
Email: sdc-bookservice@springer.com
Telephone: +49 6221 3454301
Fax: +49 6221 3454229

Weitere Bände von Undergraduate Texts in Mathematics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Short Calculus
  • I Numbers and Functions.- 1. Integers, rational numbers and real numbers.- 2. Inequalities.- 3. Functions.- 4. Powers.- II Graphs and Curves.- l. Coordinates.- 2. Graphs.- 3. The straight line.- 4. Distance between two points.- 5. Curves and equations.- 6. The circle.- 7. The parabola. Changes of coordinates.- 8. The hyperbola.- III The Derivative.- l. The slope of a curve.- 2. The derivative.- 3. Limits.- 4. Powers.- 5. Sums, products, and quotients.- 6. The chain rule.- 7. Rate of change.- IV Sine and Cosine.- l. The sine and cosine functions.- 2. The graphs.- 3. Addition formula.- 4. The derivatives.- 5. Two basic limits.- V The Mean Value Theorem.- 1. The maximum and minimum theorem.- 2. Existence of maxima and minima.- 3. The mean value theorem.- 4. Increasing and decreasing functions.- VI Sketching Curves.- 1. Behavior as x becomes very large.- 2. Curve sketching.- 3. Pol ar coordinates.- 4. Parametric curves.- VII Inverse Functions.- 1. Definition of inverse functions.- 2. Derivative of inverse functions.- 3. The arcsine.- 4. The arctangent.- VIII Exponents and Logarithms.- 1. The logarithm.- 2. The exponential function.- 3. The general exponential function.- 4. Order of magnitude.- 5. Some applications.- IX Integration.- 1. The indefinite integral.- 2. Continuous functions.- 3. Area.- 4. Upper and lower sums.- 5. The fundamental theorem.- 6. The basic properties.- X Properties of the Integral.- 1. Further connection with the derivative.- 2. Sums.- 3. Inequalities.- 4. Improper integrals.- XI Techniques of Integration.- 1. Substitution.- 2. Integration by parts.- 3. Trigonometric integrals.- 4. Partial fractions.- XII Some Substantial Exercises.- 1. An estimate for (n!)1/n.- 2. Stirling’s formula.- 3. Wallis’ product.- XIII Applications of Integration.- 1.Length of curves.- 2. Area in polar coordinates.- 3. Volumes of revolution.- 4. Work.- 5. Moments.- XIV Taylor’s Formula.- 1. Taylor’s formula.- 2. Estimate for the remainder.- 3. Trigonometric functions.- 4. Exponential function.- 5. Logarithm.- 6. The arctangent.- 7. The binomial expansion.- XV Series.- 1. Convergent series.- 2. Series with positive terms.- 3. The integral test.- 4. Absolute convergence.- 5. Power series.- 6. Differentiation and integration of power series.- Appendix 1. ? and ?.- 1. Least upper bound.- 2. Limits.- 3. Points of accumulation.- 4. Continuous functions.- Appendix 2. Physics and Mathematics.- Answers.- Supplementary Exercises.