Geometry: Plane and Fancy

Geometry: Plane and Fancy

Aus der Reihe

Fr. 72.90

inkl. gesetzl. MwSt.

Geometry: Plane and Fancy

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 72.90
Taschenbuch

Taschenbuch

ab Fr. 72.90
eBook

eBook

ab Fr. 62.90

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

09.01.1998

Verlag

Springer Us

Seitenzahl

162

Maße (L/B/H)

23.5/15.5/1.5 cm

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

09.01.1998

Verlag

Springer Us

Seitenzahl

162

Maße (L/B/H)

23.5/15.5/1.5 cm

Gewicht

436 g

Auflage

1998

Sprache

Englisch

ISBN

978-0-387-98306-6

Weitere Bände von Undergraduate Texts in Mathematics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Geometry: Plane and Fancy
  • 1 Euclid and Non-Euclid.- 1.1 The Postulates: What They Are and Why.- 1.2 The Parallel Postulate and Its Descendants.- 1.3 Proving the Parallel Postulate.- 2 Tiling the Plane with Regular Polygons.- 2.1 Isometries and Transformation Groups.- 2.2 Regular and Semiregular Tessellations.- 2.3 Tessellations That Aren’t, and Some Fractals.- 2.4 Complex Numbers and the Euclidean Plane.- 3 Geometry of the Hyperbolic Plane.- 3.1 The Poincaré disc and Isometries of the Hyperbolic Plane.- 3.2 Tessellations of the Hyperbolic Plane.- 3.3 Complex numbers, Möbius Transformations, and Geometry.- 4 Geometry of the Sphere.- 4.1 Spherical Geometry as Non-Euclidean Geometry.- 4.2 Graphs and Euler’s Theorem.- 4.3 Tiling the Sphere: Regular and Semiregular Polyhedra.- 4.4 Lines and Points: The Projective Plane and Its Cousin.- 5 More Geometry of the Sphere.- 5.1 Convex Polyhedra are Rigid: Cauchy’s Theorem.- 5.2 Hamilton, Quaternions, and Rotating the Sphere.- 5.3 Curvature of Polyhedra and the Gauss-Bonnet Theorem.- 6 Geometry of Space.- 6.1 A Hint of Riemannian Geometry.- 6.2 What Is Curvature?.- 6.3 From Euclid to Einstein.- References.