Finanzmarktökonometrie
Band 171

Finanzmarktökonometrie

Zeitstetige Systeme und ihre Anwendung in Ökonometrie und empirischer Kapitalmarktforschung

Aus der Reihe

Fr. 89.90

inkl. gesetzl. MwSt.

Finanzmarktökonometrie

Ebenfalls verfügbar als:

Taschenbuch

Taschenbuch

ab Fr. 89.90
eBook

eBook

ab Fr. 76.90

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

15.04.1999

Verlag

Physica

Seitenzahl

340

Maße (L/B/H)

23.5/15.5/1.8 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

15.04.1999

Verlag

Physica

Seitenzahl

340

Maße (L/B/H)

23.5/15.5/1.8 cm

Gewicht

539 g

Auflage

1999

Sprache

Deutsch

ISBN

978-3-7908-1204-6

Weitere Bände von Wirtschaftswissenschaftliche Beiträge

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

Weitere Artikel finden Sie in

  • Finanzmarktökonometrie
  • 1. Zeitstetige Modellierung.- I. Zeitstetige Dynamische Systeme.- 2. Deterministische Differentialgleichungen.- 2.1 Nichtlineare Systeme 1. Ordnung.- 2.2 Lineare Systeme 1, Ordnung.- 2.2.1 Inhomogene Gleichungen.- 2.2.2 Nichtautonome inhomogene Gleichungen.- 2.3 Beispiele.- 3. Stochastische Differentialgleichungen.- 3.1 Differentialgleichungen mit zufälligen Parametern.- 3.2 Wiener-Prozess und weisses Rauschen.- 3.3 Stochastische Integrale und Itô-Differentialgleichungen.- 3.4 Itô-Kalkül.- 3.4.1 Totales Differential bei deterministischen Funktionen.- 3.4.2 Itô-Formel und Itô-Taylor-Entwicklung.- 3.4.3 Beispiele.- 3.5 Stratonovich-Integrale.- 3.6 Itô oder Stratonovich ?.- 3.7 Lineare stochastische Differentialgleichungen.- 3.8 Vorwärts- und Rückwärtsgleichung.- 3.8.1 Kramers-Moyal-Entwicklung.- 3.8.2 Fokker-Planck-Gleichung.- 3.8.3 Beispiele.- 3.8.4 Kolmogoroff- und Feynman-Kac-Formel.- 3.9 SDE, Markoff- und Diffusionsprozesse.- 3.10 Gleichungen für die Momente.- 4. Simulation von Differentialgleichungen.- 4.1 Deterministische Differentialgleichungen.- 4.2 Stochastische Differentialgleichungen.- 4.3 Starke und schwache Konvergenz.- 4.4 Beispiele.- 4.4.1 Wiener-Prozess und weisses Rauschen.- 4.4.2 Geometrische Brownsche Bewegung.- 5. Zustandsraum-Modelle und Zustandsschätzung.- 5.1 Definition.- 5.2 Modelle mit farbigen Rauschtermen und Personeneffekten.- 5.3 CAR-, CARMA- und CARMAX-Modelle.- 5.4 Optimale Schätzung von Zuständen.- 5.5 Kalman-Filter (diskreter Fall).- 5.6 Kalman-Filter (kontinuierlich-diskreter Fall).- 5.7 Kalman-Bucy-Filter (kontinuierlicher Fall).- 5.8 Kalman-Glätter.- 5.9 Erweiterter Kalman-Filter (kontinuierlich-diskreter Fall).- 5.10 Nichtlinearer kontinuierlich-diskreter Filter.- 5.11 Gaussscher Kerndichte-Filter (kontinuierlich-diskreter Fall).- 5.12 Diskretisiertes kontinuierliches Sampling (DKS).- 5.13 Funktional-Integral-Filter (FIF).- 5.14 Zusammenfassung der nichtlinearen Filteralgorithmen.- 5.15 Beispiele.- 6. Parameterschätzung: Lineare Systeme.- 6.1 Lineare Systeme mit konstanten Koeffizienten.- 6.1.1 Identifikation der System-Matrizen.- 6.1.2 Exakte ML-Schätzung.- 6.1.3 Systeme ohne Messmodell.- 6.1.4 Approximative ML-Schätzung.- 6.1.5 Beispiel: Das Phillips-Modell.- 6.1.6 Beispiel: Einstellung zu Gastarbeitern.- 6.2 Unregelmässige Zeitabstände und fehlende Werte.- 6.2.1 AR-Modell mit exogenen Variablen (Sprung-Funktionen, Polygonzüge und Spline-Funktionen).- 6.2.2 Gemischte Stock- und Flow-Daten.- 6.3 Lineare Systeme mit zeitabhängigen Koeffizienten.- 6.3.1 Beispiel: variable Wachstumsmodelle.- 6.3.2 Beispiel: Brownsche Brücke.- 6.4 Parameterschätzung mit zeitstetigen Daten.- 7. Parameterschätzung: Nichtlineare Systeme.- 7.1 Diskretisiertes kontinuierliches Sampling.- 7.2 Erweiterter Kalman-Filter mit fehlenden Werten.- 7.3 EKF und Erweiterung des Systemzustands.- 7.4 Vorhersage-Fehler-Methoden.- 7.4.1 Zusammenhang mit der ML- und KQ-Methode.- 7.4.2 Rekursive Identifikation.- 7.5 Beispiel: Grenzzyklus-Modell.- 7.6 Exakte Likelihood mit Hilfe der Fokker-Planck-Gleichung.- 7.7 Beispiel: Diffusion im bimodalen Potential.- 7.8 Kerndichte-Filter, DKS und Funktional-Integral-Filter.- 7.8.1 ML-Methode.- 7.8.2 Bayes-Methode.- II. Statistische Bewertung von Optionen.- 8. Zeitstetige finanzwirtschaftliche Prozesse.- 8.1 Wiener-Prozess und geometrische Brownsche Bewegung.- 8.2 CEV-Diffusionsprozesse.- 8.3 Modelle mit stochastischen Volatilitäten/GARCH-Limes.- 8.4 Verallgemeinerte Itô-Prozesse.- 9. Black-Scholes-Differentialgleichung.- 9.1 Optionen.- 9.2 Rückwärtsgleichung mit Inhomogenität.- 9.3 Martingal-Mass und der Satz von Girsanov.- 9.4 Feynman-Kac-Formel und Greensche Funktionen.- 9.5 Spezialfälle.- 9.5.1 Black-Scholes-Formel.- 9.5.2 Cox-Ross-Optionspreis-Formel (CEV-Modell).- 9.6 Numerische Lösungsmethoden.- 9.6.1 Monte Carlo-Simulation der Feynman-Kac-Formel.- 9.6.2 Endliche Differenzen-Methoden.- 10. Parameterschätzung.- 10.1 ML-Schätzung von Diffusionskoeffizienten.- 10.2 GBB: Maximum-Likelihood-Methode.- 10.2.1 stetige Datensätze.- 10.2.2 diskrete Datensätze.- 10.3 CEV-Modell.- 10.3.1 Kleinste-Quadrate-Methoden.- 10.3.2 Approximative und exakte ML-Schätzung.- 10.3.3 Zusammenfassung.- 10.4 Schätzmethoden für allgemeine Itô-Prozesse.- 10.5 Multivariate Ansätze und State Space-Modelle.- Stochastische Volatilitäten.- 11. Ausgewählte Aktien und Optionsscheine.- 11.1 Allianz.- 11.2 Münchner Rück.- 11.3 Bayer 87/97.- 11.4 Bayer 85/95.- 11.5 Simulierter CEV-Optionsschein.- 11.6 Zusammenfassung.- Abkürzungen und Bezeichnungen.