Image Mosaicing and Super-resolution

Image Mosaicing and Super-resolution

Diss.

Aus der Reihe

Fr. 137.00

inkl. gesetzl. MwSt.

Image Mosaicing and Super-resolution

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 137.00
Taschenbuch

Taschenbuch

ab Fr. 137.00
eBook

eBook

ab Fr. 125.90

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

19.01.2004

Verlag

Springer London

Seitenzahl

218

Maße (L/B/H)

23.5/15.7/2 cm

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

19.01.2004

Verlag

Springer London

Seitenzahl

218

Maße (L/B/H)

23.5/15.7/2 cm

Gewicht

555 g

Auflage

2004

Sprache

Englisch

ISBN

978-1-85233-771-1

Weitere Bände von Distinguished Dissertations

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Image Mosaicing and Super-resolution
  • 1 Introduction.- 1.1 Background.- 1.2 Modelling assumptions.- 1.3 Applications.- 1.4 Principal contributions.- 2 Literature Survey.- 2.1 Image registration.- 2.1.1 Registration by a geometric transformation.- 2.1.2 Ensuring global consistency.- 2.1.3 Other parametric surfaces.- 2.2 Image mosaicing.- 2.3 Super-resolution.- 2.3.1 Simple super-resolution schemes.- 2.3.2 Methods using a generative model.- 2.3.3 Super-resolution using statistical prior image models.- 3 Registration: Geometric and Photometric.- 3.1 Introduction.- 3.2 Imaging geometry.- 3.3 Estimating homographies.- 3.3.1 Linear estimators.- 3.3.2 Non-linear refinement.- 3.3.3 The maximum likelihood estimator of H.- 3.4 A practical two-view method.- 3.5 Assessing the accuracy of registration.- 3.5.1 Assessment criteria.- 3.5.2 Obtaining a ground-truth homography.- 3.6 Feature-based vs. direct methods.- 3.7 Photometric registration.- 3.7.1 Sources of photometric difference.- 3.7.2 The photometric model.- 3.7.3 Estimating the parameters.- 3.7.4 Results.- 3.8 Application: Recovering latent marks in forensic images.- 3.8.1 Motivation.- 3.8.2 Method.- 3.8.3 Further examples.- 3.9 Summary.- 4 Image Mosaicing.- 4.1 Introduction.- 4.2 Basic method.- 4.2.1 Outline.- 4.2.2 Practical considerations.- 4.3 Rendering from the mosaic.- 4.3.1 The reprojection manifold.- 4.3.2 The blending function.- 4.3.3 Eliminating seams by photometric registration.- 4.3.4 Eliminating seams due to vignetting.- 4.3.5 A fast alternative to median filtering.- 4.4 Simultaneous registration of multiple views.- 4.4.1 Motivation.- 4.4.2 Extending the two-view framework to N-views.- 4.4.3 A novel algorithm for feature-matching over N-views.- 4.4.4 Results.- 4.5 Automating the choice of reprojection frame.- 4.5.1 Motivation.- 4.5.2 Synthetic camera rotations.- 4.6 Applications of image mosaicing.- 4.7 Mosaicing non-planar surfaces.- 4.8 Mosaicing “user’s guide”.- 4.9 Summary.- 4.9.1 Further examples.- 5 Super-resolution: Maximum Likelihood and Related Approaches.- 5.1 Introduction.- 5.2 What do we mean by “resolution”?.- 5.3 Single-image methods.- 5.4 The multi-view imaging model.- 5.4.1 A note on the assumptions made in the model.- 5.4.2 Discretization of the imaging model.- 5.4.3 Related approaches.- 5.4.4 Computing the elements in Mn.- 5.4.5 Boundary conditions.- 5.5 Justification for the Gaussian PSF.- 5.6 Synthetic test images.- 5.7 The average image.- 5.7.1 Noise robustness.- 5.8 Rudin’s forward-projection method.- 5.9 The maximum-likelihood estimator.- 5.10 Predicting the behaviour of the ML estimator.- 5.11 Sensitivity of the ML estimator to noise sources.- 5.11.1 Observation noise.- 5.11.2 Poorly estimated PSF.- 5.11.3 Inaccurate registration parameters.- 5.12 Irani and Peleg’s method.- 5.12.1 Least-squares minimization by steepest descent.- 5.12.2 Irani and Peleg’s algorithm.- 5.12.3 Relationship to the ML estimator.- 5.12.4 Convergence properties.- 5.13 Gallery of results.- 5.14 Summary.- 6 Super-resolution Using Bayesian Priors.- 6.1 Introduction.- 6.2 The Bayesian framework.- 6.2.1 Markov random fields.- 6.2.2 Gibbs priors.- 6.2.3 Some common cases.- 6.3 The optimal Wiener filter as a MAP estimator.- 6.4 Generic image priors.- 6.5 Practical optimization.- 6.6 Sensitivity of the MAP estimators to noise sources.- 6.6.1 Exercising the prior models.- 6.6.2 Robustness to image noise.- 6.7 Hyper-parameter estimation by cross-validation.- 6.8 Gallery of results.- 6.9 Super-resolution “user’s guide”.- 6.10 Summary.- 7 Super-resolution Using Sub-space Models.- 7.1 Introduction.- 7.2 Bound constraints.- 7.3 Learning a face model using PCA.- 7.4 Super-resolution using the PCA model.- 7.4.1 An ML estimator (FS-ML).- 7.4.2 MAP estimators.- 7.5 The behaviour of the face model estimators.- 7.6 Examples using real images.- 7.7 Summary.- 8 Conclusions and Extensions.- 8.1 Summary.- 8.2 Extensions.- 8.2.1 Application to digital video.- 8.2.2 Model-based super-resolution.- 8.3 Final observations.- A Large-scale Linear and Non-linear Optimization.- References.