• Optimization Methods in Electromagnetic Radiation
  • Optimization Methods in Electromagnetic Radiation

Optimization Methods in Electromagnetic Radiation

Aus der Reihe

Fr. 161.00

inkl. gesetzl. MwSt.

Optimization Methods in Electromagnetic Radiation

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 161.00
eBook

eBook

ab Fr. 125.90

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

08.01.2004

Verlag

Springer Us

Seitenzahl

331

Maße (L/B/H)

23.5/16.4/2.1 cm

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

08.01.2004

Verlag

Springer Us

Seitenzahl

331

Maße (L/B/H)

23.5/16.4/2.1 cm

Gewicht

626 g

Auflage

2004 edition

Sprache

Englisch

ISBN

978-0-387-20450-5

Weitere Bände von Springer Monographs in Mathematics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Optimization Methods in Electromagnetic Radiation
  • Optimization Methods in Electromagnetic Radiation
  • Contents
    Preface
    1 Arrays of Point and Line Sources, and Optimization
    1.1 The Problem of Antenna Optimization
    1.2 Arrays of Point Sources
    1.2.1 The Linear Array
    1.2.2 Circular Arrays
    1.3 Maximization of Directivity and Super-gain
    1.3.1 Directivity and Other Measures of Performance
    1.3.2 Maximization of Directivity
    1.4 Dolph-Tschebyshe. Arrays
    1.4.1 Tschebyshe. Polynomials
    1.4.2 The Dolph Problem
    1.5 Line Sources
    1.5.1 The Linear Line Source
    1.5.2 The Circular Line Source
    1.5.3 Numerical Quadrature
    1.6 Conclusion 2 Discussion of Maxwell’s Equations
    2.1 Introduction
    2.2 Geometry of the Radiating Structure
    2.3 Maxwell’s Equations in Integral Form
    2.4 The Constitutive Relations
    2.5 Maxwell’s Equations in Differential Form
    2.6 Energy Flow and the Poynting Vector
    2.7 Time Harmonic Fields
    2.8 Vector Potentials
    2.9 Radiation Condition, Far Field Pattern
    2.10 Radiating Dipoles and Line Sources
    2.11 Boundary Conditions on Interfaces
    2.12 Hertz Potentials and Classes of Solutions
    2.13 Radiation Problems in Two Dimensions 3 Optimization Theory for Antennas
    3.1 Introductory Remarks
    3.2 The General Optimization Problem
    3.2.1 Existence and Uniqueness
    3.2.2 The Modeling of Constraints
    3.2.3 Extreme Points and Optimal Solutions
    3.2.4 The Lagrange Multiplier Rule
    3.2.5 Methods of Finite Dimensional Approximation
    3.3 Far Field Patterns and Far Field Operators
    3.4 Measures of Antenna Performance 4 The Synthesis Problem
    4.1 Introductory Remarks
    4.2 Remarks on Ill-Posed Problems
    4.3 Regularization by Constraints
    4.4 The Tikhonov Regularization
    4.5 The Synthesis Problem for the Finite Linear Line Source
    4.5.1 Basic Equations
    4.5.2 The Nystr¨om Method
    4.5.3 Numerical Solution of the Normal Equations
    4.5.4 Applications of the Regularization Techniques 5Boundary Value Problems for the Two-Dimensional Helmholtz Equation
    5.1 Introduction and Formulation of the Problems
    5.2 Rellich’s Lemma and Uniqueness
    5.3 Existence by the Boundary Integral Equation Method
    5.4 L2-Boundary Data
    5.5 Numerical Methods
    5.5.1 Nystrom’s Method for Periodic Weakly Singular Kernels
    5.5.2 Complete Families of Solutions
    5.5.3 Finite Element Methods for Absorbing Boundary Conditions
    5.5.4 Hybrid Methods 6 Boundary Value Problems for Maxwell’s Equations
    6.1 Introduction and Formulation of the Problem
    6.2 Uniqueness and Existence
    6.3 L2-Boundary Data 7 Some Particular Optimization Problems
    7.1 General Assumptions
    7.2 Maximization of Power
    7.2.1 Input Power Constraints
    7.2.2 Pointwise Constraints on Inputs
    7.2.3 Numerical Simulations
    7.3 The Null-Placement Problem
    7.3.1 Maximization of Power with Prescribed Nulls
    7.3.2 A Particular Example – The Line Source
    7.3.3 Pointwise Constraints
    7.3.4 Minimization of Pattern Perturbation
    7.4 The Optimization of Signal-to-Noise Ratio and Directivity
    7.4.1 The Existence of Optimal Solutions
    7.4.2 Necessary Conditions
    7.4.3 The Finite Dimensional Problems 8 Conflicting Objectives: The Vector Optimization Problem .
    8.1 Introduction
    8.2 General Multi-criteria Optimization Problems
    8.2.1 Minimal Elements and Pareto Points
    8.2.2 The Lagrange Multiplier Rule
    8.2.3 Scalarization
    8.3 The Multi-criteria Dolph Problem for Arrays
    8.3.1 The Weak Dolph Problem
    8.3.2 Two Multi-criteria Versions
    8.4 Null Placement Problems and Super-gain
    8.4.1 Minimal Pattern Deviation
    8.4.2 Power and Super-gain
    8.5 The Signal-to-noise Ratio Problem
    8.5.1 Formulation of the Problem and Existence of Pareto Points
    8.5.2 The Lagrange Multiplier Rule
    8.5.3 An Example A Appendix
    A.1 Introduction
    A.2 Basic Notions and Examples
    A.3