Nonlinear Dynamic Modeling of Physiological Systems

Nonlinear Dynamic Modeling of Physiological Systems

IEEE Press Series on Biomedical Engineering

Aus der Reihe

Fr. 263.00

inkl. gesetzl. MwSt.

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

03.09.2004

Verlag

John Wiley & Sons Inc

Seitenzahl

560

Maße (L/B/H)

26/18.6/3.1 cm

Beschreibung

Rezension

"...a perfect research tool, as reference book, and even as a textbook. I highly recommend it to everyone interested in nonlinear dynamics." ( Journal of Intelligent & Fuzzy Systems , Vol. 16, No. 2, 2005)
"...a well-written methodology book...a useful addition to [researchers, engineers and graduate students ]...personal libraries." ( E-STREAMS , September 2005)

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

03.09.2004

Verlag

John Wiley & Sons Inc

Seitenzahl

560

Maße (L/B/H)

26/18.6/3.1 cm

Gewicht

1161 g

Auflage

1. Auflage

Sprache

Englisch

ISBN

978-0-471-46960-5

Weitere Bände von IEEE Press Series on Biomedical Engineering

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Nonlinear Dynamic Modeling of Physiological Systems
  • Prologue xiii

    1 Introduction 1

    1.1 Purpose of this Book 1

    1.2 Advocated Approach 4

    1.3 The Problem of System Modeling in Physiology 6

    1.3.1 Model Specification and Estimation 10

    1.3.2 Nonlinearity and Nonstationarity 12

    1.3.3 Definition of the Modeling Problem 13

    1.4 Types of Nonlinear Models of Physiological Systems 13

    Example 1.1. Vertebrate Retina 15

    Example 1.2. Invertebrate Photoreceptor 18

    Example 1.3. Volterra analysis of Riccati Equation 19

    Example 1.4. Glucose-Insulin Minimal Model 21

    Example 1.5. Cerebral Autoregulation 22

    1.5 Deductive and Inductive Modeling 24

    Historical Note #1: Hippocratic and Galenic Views of 26

    Integrative Physiology

    2 Nonparametric Modeling 29

    2.1 Volterra Models 31

    2.1.1 Examples of Volterra Models 37

    Example 2.1. Static Nonlinear System 37

    Example 2.2. L-N Cascade System 38

    Example 2.3. L-N-M "Sandwich" System 39

    Example 2.4. Riccati System 40

    2.1.2 Operational Meaning of the Volterra Kernels 41

    Impulsive Inputs 42

    Sinusoidal Inputs 43

    Remarks on the Meaning of Volterra Kernels 45

    2.1.3 Frequency-Domain Representation of the Volterra Models 45

    2.1.4 Discrete-Time Volterra Models 47

    2.1.5 Estimation of Volterra Kernels 49

    Specialized Test Inputs 50

    Arbitrary Inputs 52

    Fast Exact Orthogonalization and Parallel-Cascade Methods 55

    Iterative Cost-Minimization Methods for Non-Gaussian 55

    Residuals

    2.2 Wiener Models 57

    2.2.1 Relation between Volterra and Wiener Models 60

    The Wiener Class of Systems 62

    Examples of Wiener Models 63

    Comparison of Volterra/Wiener Model Predictions 64

    2.2.2 Wiener Approach to Kernel Estimation 67

    2.2.3 The Cross-Correlation Technique for Wiener Kernel Estimation 72

    Estimation of h0 73

    Estimation of h1 (¿) 73

    Estimation of h2 (¿1, ¿2) 74

    Estimation of h3 (¿1, ¿2, ¿3) 75

    Some Practical Considerations 77

    Illustrative Example 78

    Frequency-Domain Estimation of Wiener Kernels 78

    2.2.4 Quasiwhite Test Inputs 80

    CSRS and Volterra Kernels 84

    The Diagonal Estimability Problem 85

    An Analytical Example 86

    Comparison of Model Prediction Errors 88

    Discrete-Time Representation of the CSRS Functional Series 89

    Pseudorandom Signals Based on m-Sequences 89

    Comparative Use of GWN, PRS, and CSRS 92

    2.2.5 Apparent Transfer Function and Coherence Measurements 93

    Example 2.5. L-N Cascade System 96

    Example 2.6. Quadratic Volterra System 97

    Example 2.7. Nonwhite Gaussian Inputs 98

    Example 2.8. Duffing System 98

    Concluding Remarks 99

    2.3 Efficient Volterra Kernel Estimation 100

    2.3.1 Volterra Kernel Expansions 101

    Model Order Determination 104

    2.3.2 The Laguerre Expansion Technique 107

    Illustrative Examples 112

    2.3.3 High-Order Volterra Modeling with Equivalent Networks 122

    2.4 Analysis of Estimation Errors 125

    2.4.1 Sources of Estimation Errors 125

    2.4.2 Estimation Errors Associated with the Cross-Correlation 127

    Technique Estimation Bias 128

    Estimation Variance 130

    Optimization of Input Parameters 131

    Noise Effects 134

    Erroneous Scaling of Kernel Estimates 136

    2.4.3 Estimation Errors Associated with Direct Inversion Methods 137

    2.4.4 Estimation Errors Associated with Iterative 139

    Cost-Minimization Methods Historical Note #2: Vito Volterra and Norbert Wiener 140

    3 Parametric Modeling 145

    3.1 Basic Parametric Model Forms and Estimation Procedures 146

    3.1.1 The Nonlinear Case 150

    3.1.2 The Nonstationary Case 152

    3.2 Volterra Kernels of Nonlinear Differential Equations 153

    Example 3.1. The Riccati Equation 157

    3.2.1 Apparent Transfer Functions of Linearized Models 158

    Example 3.2. Illustrative Example 160

    3.2.2 Nonlinear Parametric Models with Intermodulation 161

    3.3 Discrete-Time Volterra Kernels of NARMAX Models 164

    3.4 From Volterra Kernel Measurements to Parametric Models 167

    Example 3.3. Illustrative Example 169

    3.5 Equivalence Between Continuous and Discrete Parametric Models 171

    Example 3.4. Illustrative Example 175

    3.5.1 Modular Representation 177

    4 Modular and Connectionist Modeling 179

    4.1 Modular Form of Nonparametric Models 179

    4.1.1 Principal Dynamic Modes 180

    Illustrative Examples 186

    4.1.2 Volterra Models of System Cascades 191

    The L-N-M, L-N, and N-M Cascades 194

    4.1.3 Volterra Models of Systems with Lateral Branches 198

    4.1.4 Volterra Models of Systems with Feedback Branches 200

    4.1.5 Nonlinear Feedback Described by Differential Equations 202

    Example 1. Cubic Feedback Systems 204

    Example 2. Sigmoid Feedback Systems 209

    Example 3. Positive Nonlinear Feedback 213

    Example 4. Second-Order Kernels of Nonlinear 215

    Feedback Systems Nonlinear Feedback in Sensory Systems 216

    Concluding Remarks on Nonlinear Feedback 220

    4.2 Connectionist Models 223

    4.2.1 Equivalence between Connectionist and Volterra Models 223

    Relation with PDM Modeling 230

    Illustrative Examples 232

    4.2.2 Volterra-Equivalent Network Architectures for Nonlinear 235

    System Modeling Equivalence with Volterra Kernels/Models 238

    Selection of the Structural Parameters of the VEN Model 238

    Convergence and Accuracy of the Training Procedure 240

    The Pseudomode-Peeling Method 244

    Nonlinear Autoregressive Modeling (Open-Loop) 246

    4.3 The Laguerre-Volterra Network 246

    Illustrative Example of LVN Modeling 249

    Modeling Systems with Fast and Slow Dynamic (LVN-2) 251

    Illustrative Examples of LVN-2 Modeling 255

    4.4 The VWM Model 260

    5 A Practitioner's Guide 265

    5.1 Practical Considerations and Experimental Requirements 265

    5.1.1 System Characteristics 266

    System Bandwidth 266

    System Memory 267

    System Dynamic Range 267

    System Linearity 268

    System Stationarity 268

    System Ergodicity 268

    5.1.2 Input Characteristics 269

    5.1.3 Experimental Characteristics 270

    5.2 Preliminary Tests and Data Preparation 272

    5.2.1 Test for System Bandwidth 272

    5.2.2 Test for System Memory 272

    5.2.3 Test for System Stationarity and Ergodicity 273

    5.2.4 Test for System Linearity 274

    5.2.5 Data Preparation 275

    5.3 Model Specification and Estimation 276

    5.3.1 The MDV Modeling Methodology 277

    5.3.2 The VEN/VWM Modeling Methodology 278

    5.4 Model Validation and Interpretation 279

    5.4.1 Model Validation 279

    5.4.2 Model Interpretation 281

    Interpretation of Volterra Kernels 281

    Interpretation of the PDM Model 282

    5.5 Outline of Step-by-Step Procedure 283

    5.5.1 Elaboration of the Key Step # 5 284

    6 Selected Applications 285

    6.1 Neurosensory Systems 286

    6.1.1 Vertebrate Retina 287

    6.1.2 Invertebrate Retina 396

    6.1.3 Auditory Nerve Fibers 302

    6.1.4 Spider Mechanoreceptor 307

    6.2 Cardiovascular System 320

    6.3 Renal System 333

    6.4 Metabolic-Endocrine System 342

    7 Modeling of Multiinput/Multioutput Systems 359

    7.1 The Two-Input Case 360

    7.1.1 The Two-Input Cross-Correlation Technique 362

    7.1.2 The Two-Input Kernel-Expansion Technique 362

    7.1.3 Volterra-Equivalent Network Models with Two Inputs 364

    Illustrative Example 366

    7.2 Applications of Two-Input Modeling to Physiological Systems 369

    7.2.1 Motion Detection in the Invertebrate Retina 369

    7.2.2 Receptive Field Organization in the Vertebrate Retina 370

    7.2.3 Metabolic Autoregulation in Dogs 378

    7.2.4 Cerebral Autoregulation in Humans 380

    7.3 The Multiinput Case 389

    7.3.1 Cross-Correlation-Based Method for Multiinput Modeling 390

    7.3.2 The Kernel-Expansion Method for Multiinput Modeling 393

    7.3.3 Network-Based Multiinput Modeling 393

    7.4 Spatiotemporal and Spectrotemporal Modeling 395

    7.4.1 Spatiotemporal Modeling of Retinal Cells 398

    7.4.2 Spatiotemporal Modeling of Cortical Cells 401

    8 Modeling of Neuronal Systems 407

    8.1 A General Model of Membrane and Synaptic Dynamics 408

    8.2 Functional Integration in the Single Neuron 414

    8.2.1 Neuronal Modes and Trigger Regions 417

    Illustrative Examples 427

    8.2.2 Minimum-Order Modeling of Spike-Output Systems 432

    The Reverse-Correlation Technique 432

    Minimum-Order Wiener Models 435

    Illustrative Example 439

    8.3 Neuronal Systems with Point-Process Inputs 439

    8.3.1 The Lag-Delta Representation of P-V or P-W Kernels 445

    8.3.2 The Reduced P-V or P-W Kernels 446

    8.3.3 Examples from the Hippocampal Formation 450

    Single-Input Stimulation in Vivo and Cross-Correlation  450

    Technique

    Single-Input Stimulation in Vitro and Laguerre-Expansion 455

    Technique

     Dual-Input Stimulation in the Hippocampal Slice 457

    Nonlinear Modeling of Synaptic Dynamics 461

    8.4 Modeling of Neuronal Ensembles 463

    9 Modeling of Nonstationary Systems 467

    9.1 Quasistationary and Recursive Tracking Methods 468

    9.2 Kernel Expansion Method 469

    9.2.1 Illustrative Example 474

    9.2.2 A Test of Nonstationarity 475

    9.2.3 Linear Time-Varying Systems with Arbitrary Inputs 479

    9.3 Network-Based Methods 480

    9.3.1 Illustrative Examples 481

    9.4 Applications to Nonstationary Physiological Systems 484

    10 Modeling of Closed-Loop Systems 489

    10.1 Autoregressive Form of Closed-Loop Model 490

    10.2 Network Model Form of Closed-Loop Systems 491

    Appendix I Function Expansions 495

    Appendix II Gaussian White Noise 499

    Appendix III Construction of the Wiener Series 503

    Appendix IV Stationarity, Ergodicity, and Autocorrelation Functions of Random Processes 505

     References 507

    Index 535