Smoothness Priors Analysis of Time Series
Fr. 171.00
inkl. gesetzl. MwSt.Beschreibung
Details
Einband
Taschenbuch
Erscheinungsdatum
09.08.1996
Verlag
Springer UsSeitenzahl
280
Maße (L/B/H)
23.5/15.5/1.4 cm
Smoothness Priors Analysis of Time Series
addresses some of the problems of modeling stationary and nonstationary time series primarily from a Bayesian stochastic regression "smoothness priors" state space point of view. Prior distributions on model coefficients are parametrized by hyperparameters. Maximizing the likelihood of a small number of hyperparameters permits the robust modeling of a time series with relatively complex structure and a very large number of implicitly inferred parameters. The critical statistical ideas in smoothness priors are the likelihood of the Bayesian model and the use of likelihood as a measure of the goodness of fit of the model. The emphasis is on a general state space approach in which the recursive conditional distributions for prediction, filtering, and smoothing are realized using a variety of nonstandard methods including numerical integration, a Gaussian mixture distribution-two filter smoothing formula, and a Monte Carlo "particle-path tracing" method in which the distributions are approximated by many realizations. The methods are applicable for modeling time series with complex structures.
Weitere Bände von Lecture Notes in Statistics
-
Zur Artikeldetailseite von Robust Statistics, Data Analysis, and Computer Intensive Methods des Autors Helmut Rieder
Helmut Rieder
Robust Statistics, Data Analysis, and Computer Intensive MethodsBuch
Fr. 137.00
-
Zur Artikeldetailseite von Nonparametric Statistics for Stochastic Processes des Autors D. Bosq
D. Bosq
Nonparametric Statistics for Stochastic ProcessesBuch
Fr. 181.00
-
Zur Artikeldetailseite von Statistical Disclosure Control in Practice des Autors Leon Willenborg
Leon Willenborg
Statistical Disclosure Control in PracticeBuch
Fr. 137.00
-
Zur Artikeldetailseite von Learning from Data des Autors Doug Fisher
Doug Fisher
Learning from DataBuch
Fr. 137.00
-
Zur Artikeldetailseite von Optimum Designs for Multi-Factor Models des Autors Rainer Schwabe
Rainer Schwabe
Optimum Designs for Multi-Factor ModelsBuch
Fr. 72.90
-
Zur Artikeldetailseite von Athens Conference on Applied Probability and Time Series Analysis des Autors C. C. Heyde
C. C. Heyde
Athens Conference on Applied Probability and Time Series AnalysisBuch
Fr. 137.00
-
Zur Artikeldetailseite von Athens Conference on Applied Probability and Time Series Analysis des Autors P. M. Robinson
P. M. Robinson
Athens Conference on Applied Probability and Time Series AnalysisBuch
Fr. 137.00
-
Zur Artikeldetailseite von Smoothness Priors Analysis of Time Series des Autors Genshiro Kitagawa
Genshiro Kitagawa
Smoothness Priors Analysis of Time SeriesBuch
Fr. 171.00
-
Zur Artikeldetailseite von Stochastic Networks des Autors Paul Glasserman
Paul Glasserman
Stochastic NetworksBuch
Fr. 137.00
-
Zur Artikeldetailseite von Bayesian Learning for Neural Networks des Autors Radford M. Neal
Radford M. Neal
Bayesian Learning for Neural NetworksBuch
Fr. 209.00
-
Zur Artikeldetailseite von Applications of Computer Aided Time Series Modeling des Autors Aoki Masanao
Aoki Masanao
Applications of Computer Aided Time Series ModelingBuch
Fr. 137.00
-
Zur Artikeldetailseite von Latent Variable Modeling and Applications to Causality des Autors Maia Berkane
Maia Berkane
Latent Variable Modeling and Applications to CausalityBuch
Fr. 137.00
Unsere Kundinnen und Kunden meinen
Verfassen Sie die erste Bewertung zu diesem Artikel
Helfen Sie anderen Kund*innen durch Ihre Meinung
Erste Bewertung verfassen