Medical Image Analysis

Medical Image Analysis

IEEE Press Series on Biomedical Engineering

Aus der Reihe

Fr. 213.00

inkl. gesetzl. MwSt.

Medical Image Analysis

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 213.00
eBook

eBook

ab Fr. 120.00

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.03.2011

Verlag

John Wiley & Sons

Seitenzahl

392

Maße (L/B/H)

24/16.1/2.6 cm

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.03.2011

Verlag

John Wiley & Sons

Seitenzahl

392

Maße (L/B/H)

24/16.1/2.6 cm

Gewicht

762 g

Auflage

2nd Revised edition

Sprache

Englisch

ISBN

978-0-470-62205-6

Weitere Bände von IEEE Press Series on Biomedical Engineering

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

Die Leseprobe wird geladen.
  • Medical Image Analysis
  • Preface to the Second Edition xiii

    Chapter 1 Introduction 1

    1.1. Medical Imaging: A Collaborative Paradigm 2

    1.2. Medical Imaging Modalities 3

    1.3. Medical Imaging: from Physiology to Information Processing 6

    1.3.1 Understanding Physiology and Imaging Medium 6

    1.3.2 Physics of Imaging 7

    1.3.3 Imaging Instrumentation 7

    1.3.4 Data Acquisition and Image Reconstruction 7

    1.3.5 Image Analysis and Applications 8

    1.4. General Performance Measures 8

    1.4.1 An Example of Performance Measure 10

    1.5. Biomedical Image Processing and Analysis 11

    1.6. Matlab Image Processing Toolbox 14

    1.6.1 Digital Image Representation 14

    1.6.2 Basic MATLAB Image Toolbox Commands 16

    1.7. Imagepro Interface in Matlab Environment and Image Databases 19

    1.7.1 Imagepro Image Processing Interface 19

    1.7.2 Installation Instructions 20

    1.8. Imagej and Other Image Processing Software Packages 20

    1.9. Exercises 21

    1.10. References 22

    1.11. Definitions 22

    Chapter 2 Image Formation23

    2.1. Image Coordinate System 24

    2.1.1 2-D Image Rotation 25

    2.1.2 3-D Image Rotation and Translation Transformation 26

    2.2. Linear Systems 27

    2.3. Point Source and Impulse Functions 27

    2.4. Probability and Random Variable Functions 29

    2.4.1 Conditional and Joint Probability Density Functions 30

    2.4.2 Independent and Orthogonal Random Variables 31

    2.5. Image Formation 32

    2.5.1 PSF and Spatial Resolution 35

    2.5.2 Signal-to-Noise Ratio 37

    2.5.3 Contrast-to-Noise Ratio 39

    2.6. Pin-hole Imaging 39

    2.7. Fourier Transform 40

    2.7.1 Sinc Function 43

    2.8. Radon Transform 44

    2.9. Sampling 46

    2.10. Discrete Fourier Transform 50

    2.11. Wavelet Transform 52

    2.12. Exercises 60

    2.13. References 62

    Chapter 3 Interaction of Electromagnetic Radiation with Matter in Medical Imaging 65

    3.1. Electromagnetic Radiation 65

    3.2. Electromagnetic Radiation for Image Formation 66

    3.3. Radiation Interaction with Matter 67

    3.3.1 Coherent or Rayleigh Scattering 67

    3.3.2 Photoelectric Absorption 68

    3.3.3 Compton Scattering 69

    3.3.4 Pair Production 69

    3.4. Linear Attenuation Coefficient 70

    3.5. Radiation Detection 70

    3.5.1 Ionized Chambers and Proportional Counters 70

    3.5.2 Semiconductor Detectors 72

    3.5.3 Advantages of Semiconductor Detectors 73

    3.5.4 Scintillation Detectors 73

    3.6. Detector Subsystem Output Voltage Pulse 76

    3.7. Exercises 78

    3.8. References 78

    Chapter 4 Medical Imaging Modalities: X-Ray Imaging 79

    4.1. X-Ray Imaging 80

    4.2. X-Ray Generation 81

    4.3. X-Ray 2-D Projection Imaging 84

    4.4. X-Ray Mammography 86

    4.5. X-Ray CT 88

    4.6. Spiral X-Ray CT 92

    4.7. Contrast Agent, Spatial Resolution, and SNR 95

    4.8. Exercises 96

    4.9. References 97

    Chapter 5 Medical Imaging Modalities: Magnetic Resonance Imaging 99

    5.1. MRI Principles 100

    5.2. MR Instrumentation 110

    5.3. MRI Pulse Sequences 112

    5.3.1 Spin-Echo Imaging 114

    5.3.2 Inversion Recovery Imaging 118

    5.3.3 Echo Planar Imaging 119

    5.3.4 Gradient Echo Imaging 123

    5.4. Flow Imaging 125

    5.5. fMRI 129

    5.6. Diffusion Imaging 130

    5.7. Contrast, Spatial Resolution, and SNR 135

    5.8. Exercises 137

    5.9. References 138

    Chapter 6 Nuclear Medicine Imaging Modalities 139

    6.1. Radioactivity 139

    6.2. SPECT 140

    6.2.1 Detectors and Data Acquisition System 142

    6.2.2 Contrast, Spatial Resolution, and Signal-to-Noise Ratio in SPECT Imaging 145

    6.3. PET 148

    6.3.1 Detectors and Data Acquisition Systems 150

    6.3.2 Contrast, Spatial Resolution, and SNR in PET Imaging 150

    6.4. Dual-Modality Spect-CT and PET-CT Scanners 151

    6.5. Exercises 154

    6.6. References 155

    Chapter 7 Medical Imaging Modalities: Ultrasound Imaging 157

    7.1. Propagation of Sound in a Medium 157

    7.2. Reflection and Refraction 159

    7.3. Transmission of Ultrasound Waves in a Multilayered Medium 160

    7.4. Attenuation 162

    7.5. Ultrasound Reflection Imaging 163

    7.6. Ultrasound Imaging Instrumentation 164

    7.7. Imaging with Ultrasound: A-Mode 166

    7.8. Imaging with Ultrasound: M-Mode 167

    7.9. Imaging with Ultrasound: B-Mode 168

    7.10. Doppler Ultrasound Imaging 169

    7.11. Contrast, Spatial Resolution, and SNR 170

    7.12. Exercises 171

    7.13. References 172

    Chapter 8 Image Reconstruction 173

    8.1. Radon Transform and Image Reconstruction 174

    8.1.1 The Central Slice Theorem 174

    8.1.2 Inverse Radon Transform 176

    8.1.3 Backprojection Method 176

    8.2. Iterative Algebraic Reconstruction Methods 180

    8.3. Estimation Methods 182

    8.4. Fourier Reconstruction Methods 185

    8.5. Image Reconstruction in Medical Imaging Modalities 186

    8.5.1 Image Reconstruction in X-Ray CT 186

    8.5.2 Image Reconstruction in Nuclear Emission Computed Tomography: SPECT and PET 188

    8.5.2.1 A General Approach to ML-EM Algorithms 189

    8.5.2.2 A Multigrid EM Algorithm 190

    8.5.3 Image Reconstruction in Magnetic Resonance Imaging 192

    8.5.4 Image Reconstruction in Ultrasound Imaging 193

    8.6. Exercises 194

    8.7. References 195

    Chapter 9 Image Processing and Enhancement 199

    9.1. Spatial Domain Methods 200

    9.1.1 Histogram Transformation and Equalization 201

    9.1.2 Histogram Modification 203

    9.1.3 Image Averaging 204

    9.1.4 Image Subtraction 204

    9.1.5 Neighborhood Operations 205

    9.1.5.1 Median Filter 207

    9.1.5.2 Adaptive Arithmetic Mean Filter 207

    9.1.5.3 Image Sharpening and Edge Enhancement 208

    9.1.5.4 Feature Enhancement Using Adaptive Neighborhood Processing 209

    9.2. Frequency Domain Filtering 212

    9.2.1 Wiener Filtering 213

    9.2.2 Constrained Least Square Filtering 214

    9.2.3 Low-Pass Filtering 215

    9.2.4 High-Pass Filtering 217

    9.2.5 Homomorphic Filtering 217

    9.3. Wavelet Transform for Image Processing 220

    9.3.1 Image Smoothing and Enhancement Using Wavelet Transform 223

    9.4. Exercises 226

    9.5. References 228

    Chapter 10 Image Segmentation 229

    10.1. Edge-Based Image Segmentation 229

    10.1.1 Edge Detection Operations 230

    10.1.2 Boundary Tracking 231

    10.1.3 Hough Transform 233

    10.2. Pixel-Based Direct Classification Methods 235

    10.2.1 Optimal Global Thresholding 237

    10.2.2 Pixel Classification Through Clustering 239

    10.2.2.1 Data Clustering 239

    10.2.2.2 k-Means Clustering 241

    10.2.2.3 Fuzzy c-Means Clustering 242

    10.2.2.4 An Adaptive FCM Algorithm 244

    10.3. Region-Based Segmentation 245

    10.3.1 Region-Growing 245

    10.3.2 Region-Splitting 247

    10.4. Advanced Segmentation Methods 248

    10.4.1 Estimation-Model Based Adaptive Segmentation 249

    10.4.2 Image Segmentation Using Neural Networks 254

    10.4.2.1 Backpropagation Neural Network for Classification 255

    10.4.2.2 The RBF Network 258

    10.4.2.3 Segmentation of Arterial Structure in Digital Subtraction Angiograms 259

    10.5. Exercises 261

    10.6. References 262

    Chapter 11 Image Representation, Analysis, and Classification 265

    11.1. Feature Extraction and Representation 268

    11.1.1 Statistical Pixel-Level Features 268

    11.1.2 Shape Features 270

    11.1.2.1 Boundary Encoding: Chain Code 271

    11.1.2.2 Boundary Encoding: Fourier Descriptor 273

    11.1.2.3 Moments for Shape Description 273

    11.1.2.4 Morphological Processing for Shape Description 274

    11.1.3 Texture Features 280

    11.1.4 Relational Features 282

    11.2. Feature Selection for Classification 283

    11.2.1 Linear Discriminant Analysis 285

    11.2.2 PCA 288

    11.2.3 GA-Based Optimization 289

    11.3. Feature and Image Classification 292

    11.3.1 Statistical Classification Methods 292

    11.3.1.1 Nearest Neighbor Classifier 293

    11.3.1.2 Bayesian Classifier 293

    11.3.2 Rule-Based Systems 294

    11.3.3 Neural Network Classifiers 296

    11.3.3.1 Neuro-Fuzzy Pattern Classification 296

    11.3.4 Support Vector Machine for Classification 302

    11.4. Image Analysis and Classification Example: "Difficult-To-Diagnose" Mammographic Microcalcifications 303

    11.5. Exercises 306

    11.6. References 307

    Chapter 12 Image Registration 311

    12.1. Rigid-Body Transformation 314

    12.1.1 Affine Transformation 316

    12.2. Principal Axes Registration 316

    12.3. Iterative Principal Axes Registration 319

    12.4. Image Landmarks and Features-Based Registration 323

    12.4.1 Similarity Transformation for Point-Based Registration 323

    12.4.2 Weighted Features-Based Registration 324

    12.5. Elastic Deformation-Based Registration 325

    12.6. Exercises 330

    12.7. References 331

    Chapter 13 Image Visualization 335

    13.1. Feature-Enhanced 2-D Image Display Methods 336

    13.2. Stereo Vision and Semi-3-D Display Methods 336

    13.3. Surface- and Volume-Based 3-D Display Methods 338

    13.3.1 Surface Visualization 339

    13.3.2 Volume Visualization 344

    13.4. VR-Based Interactive Visualization 347

    13.4.1 Virtual Endoscopy 349

    13.5. Exercises 349

    13.6. References 350

    Chapter 14 Current and Future Trends in Medical Imaging and Image Analysis 353

    14.1. Multiparameter Medical Imaging and Analysis 353

    14.2. Targeted Imaging 357

    14.3. Optical Imaging and Other Emerging Modalities 357

    14.3.1 Optical Microscopy 358

    14.3.2 Optical Endoscopy 360

    14.3.3 Optical Coherence Tomography 360

    14.3.4 Diffuse Reflectance and Transillumination Imaging 362

    14.3.5 Photoacoustic Imaging: An Emerging Technology 363

    14.4. Model-Based and Multiscale Analysis 364

    14.5. References 366

    Index 503