Electron Transport in Compound Semiconductors
Band 11

Electron Transport in Compound Semiconductors

Aus der Reihe

Fr. 137.00

inkl. gesetzl. MwSt.

Electron Transport in Compound Semiconductors

Ebenfalls verfügbar als:

Taschenbuch

Taschenbuch

ab Fr. 137.00
eBook

eBook

ab Fr. 125.90

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

15.12.2011

Verlag

Springer Berlin

Seitenzahl

464

Maße (L/B/H)

23.5/15.5/2.7 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

15.12.2011

Verlag

Springer Berlin

Seitenzahl

464

Maße (L/B/H)

23.5/15.5/2.7 cm

Gewicht

727 g

Auflage

Softcover reprint of the original 1st ed. 1980

Sprache

Englisch

ISBN

978-3-642-81418-1

Weitere Bände von Springer Series in Solid-State Sciences

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Electron Transport in Compound Semiconductors
  • 1. Introduction.- 1.1 Historical Note.- 1.2 Applications.- 1.3 Transport Coefficients of Interest.- 1.4 Scope of the Book.- 2. Crystal Structure.- 2.1 Zinc-Blende Structure.- 2.2 Wurtzite Structure.- 2.3 Rock-Salt Structure.- 2.4 Chalcopyrite Structure.- 3. Energy Band Structure.- 3.1 Electron Wave Vector and Brillouin Zone.- 3.2 Brillouin Zone for the Sphalerite and Rock-Salt Crystal Structure.- 3.3 Brillouin Zone for the Wurtzite Structure.- 3.4 Brillouin Zone for the Chalcopyrite Structure.- 3.5 E-k Diagrams.- 3.5.1 Energy Bands for the Sphalerite Structure.- 3.5.2 Energy Bands for the Wurtzite Structure.- 3.5.3 Energy Bands for the Rock-Salt Structure.- 3.5.4 Band Structure of Mixed Compounds.- 3.6 Conclusion.- 4. Theory of Efiergy Band Structure.- 4.1 Models of Band Structure.- 4.2 Free-Electron Approximation Model.- 4.3 Tight-Binding Approximation Model.- 4.4 Energy Bands in Semiconductor Super!attices.- 4.5 The k-p Perturbation Method for Derivating E-k Relation.- 4.5.1 Single-Band Perturbation Theory.- 4.5.2 Two-Band Approximation.- 4.5.3 Effect of Spin-Orbit Interaction.- 4.5.4 Nonparabolic Relation for Extrema at Points Other than the r Point.- 4.6 External Effects on Energy Bands.- 4.6.1 Effects of Doping.- 4.6.2 Effects of Large Magnetic Fields.- 5. Electron Statistics.- 5.1 Fermi Energy for Parabolic Bands.- 5.2 Fermi Energy for Nonparabolic Bands.- 5.3 Fermi Energy in the Presence of a Quantising Magnetic Field.- 5.3.1 Density of States.- 5.3.2 Fermi Level.- 5.4 Fermi Energy and Impurity Density.- 5.4.1 General Considerations.- 5.4.2 General Formula.- 5.4.3 Discussion of Parabolic Band.- 5.4.4 Effect of Magnetic Field.- 5.5 Conclusions.- 6. Scattering Theory.- 6.1 Collision Processes.- 6.2 Transition Probability.- 6.3 Matrix Elements.- 6.4 Free-Carrier Screening.- 6.5 Overlap Integrals.- 6.6 Scattering Probability S(k).- 6.6.1 S(k) for Ionised Impurity Scattering.- 6.6.2 S(k) for Piezoelectric Scattering.- 6.6.3 S(k) for Deformation-Potential Acoustic Phonon Scattering.- 6.6.4 S(k) for Polar Optic Phonon Scattering.- 6.6.5 S(k) for Intervalley and Nonpolar Optic Phonon Scattering.- 6.7 Scattering Probabilities for Anisotropic Bands.- 6.7.1 Herring-Vogt Transformation.- 6.7.2 Scattering Integrals.- 6.8 S(k) for Neutral Impurity, Alloy, and Crystal-Defect Scattering.- 6.8.1 Neutral-Impurity Scattering.- 6.8.2 Alloy Scattering.- 6.8.3 Defect Scattering.- 6.9 Conclusions.- 7. The Boltzmann Transport Equation and Its Solution.- 7.1 The Liouville Equation and the Boltzmann Equation.- 7.2 The Boltzmann Transport Equation.- 7.3 The Collision Integral.- 7.4 Linearised Boltzmann Equation.- 7.5 Simplified Form of the Collision Terms.- 7.5.1 Collision Terms for Elastic Scattering.- 7.5.2 Collision Terms for Inelastic Scattering.- 7.6 Solution of the Boltzmann Equation.- 7.6.1 Relaxation-Time Approximation.- 7.6.2 Variational Method.- 7.6.3 Matrix Method.- 7.6.4 Iteration Method.- 7.6.5 Monte Carlo Method.- 7.7 Method of Solution for Anisotropic Coupling Constants and Anisotropic Electron Effective Mass.- 7.7.1 Solution for Elastic Collisions.- 7.7.2 Solution for Randomising Collisions.- 7.7.3 Solution for Nonrandomising Inelastic Collisions.- 7.8 Conclusions.- 8. Low-Field DC Transport Coefficients.- 8.1 Evaluation of Drift Mobility.- 8.1.1 Formulae for Relaxation-Time Approximation.- 8.1.2 Evaluation by the Variational Method.- 8.1.3 Evaluation by Matrix and Iteration Methods.- 8.1.4 Evaluation by the Monte Carlo Method.- 8.2 Drift Mobility for Anisotropic Bands.- 8.2.1 Ellipsoidal Band.- 8.2.2 Warped Band.- 8.3 Galvanomagnetic Transport Coefficients.- 8.3:1 Formulae for Hall Coefficient, Hall Mobility, and Magnetoresistance.- 8.3.2 Reduced Boltzmann Equation for the Galvanomagnetic Coefficients.- 8.3.3 Solution Using the Relaxation-Time Approximation Method.- 8.3.4 A Simple Formula for the Low-Field Hall Mobility.- 8.3.5 Numerical Methods for the Galvanomagnetic Coefficients for Arbitrary Magnetic Fields.- 8.3.6 Evaluation of the Galvanomagnetic Transport Coefficients for Anisotropic Effective Mass.- 8.4 Transport Coefficients for Nonuniform conditions.- 8.4.1 Diffusion.- 8.4.2 Thermal Transport Coefficients.- 8.4.3 Formula for Thermoelectric Power.- 8.4.4 Electronic Thermal Conductivity.- 8.5 Conclusions.- 9. Low-Field AC Transport Coefficients.- 9.1 Classical Theory of AC Transport Coefficients.- 9.1.1 Solution for the Relaxation-Time Approximation.- 9.1.2 Solution for Polar Optic Phonon and Mixed Scattering.- 9.1.3 Solution for Nonparabolic and Anisotropic Bands.- 9.2 AC Galvanomagnetic Coefficients.- 9.3 Cyclotron Resonance and Faraday Rotation.- 9.3.1 Propagation of Electromagnetic Waves in a Semiconductor in the Presence of a Magnetic Field.- 9.3.2 Cyclotron Resonance Effect.- 9.3.3 Faraday Rotation.- 9.4 Free-Carrier Absorption (FCA).- 9.4.1 Classical Theory of FCA.- 9.4.2 Quantum-Mechanical Theory of FCA.- 9.5 Concluding Remarks.- 10. Electron Transport in a Strong Magnetic Field.- 10.1 Scattering Probabilities.- 10.2 Mobility in Strong Magnetic Fields.- 10.3 Electron Mobility in the Extreme Quantum Limit (EQL).- 10.3.1 Electron Mobility for Polar Optic Phonon Scattering in the EQL.- 10.4 Oscillatory Effects in the Magnetoresistance.- 10.4.1 Shubnikov-de Haas Effect.- 10.4.2 Magnetophonon Oscillations.- 10.5 Experimental Results on Magnetophonon Resonance.- 10.6 Conclusions.- 11. Hot-Electron Transport.- 11.1 Phenomenon of Hot Electrons.- 11.2 Experimental Characteristics.- 11.3 Negative Differential Mobility and Electron Transfer Effect.- 11.4 Analytic Theories.- 11.4.1 Differential Equation Method.- 11.4.2 Maxwellian Distribution Function Method.- 11.4.3 Displaced Maxwellian Distribution Function Method.- 11.5 Numerical Methods.- 11.5.1 Iteration Method.- 11.5.2 Monte Carlo Method.- 11.6 Hot-Electron AC Conductivity.- 11.6.1 Phenomenological Theory for Single-Valley Materials.- 11.6.2 Phenomenological Theory for Two-Valley Materials.- 11.6.3 Large-Signal AC Conductivity.- 11.7 Hot-Electron Diffusion.- 11.7.1 Einstein Relation for Hot-Electron Diffusivity.- 11.7.2 Electron Diffusivity in Gallium Arsenide.- 11.7.3 Monte Carlo Calculation of the Diffusion Constant.- 11.8 Conclusion.- 12. Review of Experimental Results.- 12.1 Transport Coefficients of III-V Compounds.- 12.1.1 Indium Antimonide.- 12.1.2 Gallium Arsenide.- 12.1.3 Indium Phosphide.- 12.1.4 Indium Arsenide.- 12.1.5 Indirect-Band-Gap III-V Compounds.- 12.2 II-VI Compounds.- 12.2.1 Cubic Compounds of Zinc and Cadmium.- 12.2.2 Wurtzite Compounds of Zinc and Cadmium.- 12.2.3 Mercury Compounds.- 12.3 IV-VI Compounds.- 12.4 Mixed Compounds.- 12.5 Chalcopyrites.- 12.6 Conclusion.- 13. Conclusions.- 13.1 Problems of Current Interest.- 13.1.1 Heavily Doped Materials.- 13.1.2 Alloy Semiconductors.- 13.1.3 Transport Under Magnetically Quantised Conditions.- 13.1.4 Inversion Layers.- 13.1.5 Superlattices and Heterostructures.- 13.2 Scope of Further Studies.- Appendix A: Table of Fermi Integrals.- Appendix B: Computer Program for the Evaluation of Transport Coefficients by the Iteration Method.- Appendix C: Values of a. and b. for Gaussian Quadrature Integration. 417 Appendix D: Computer Program for the Monte Carlo Calculation of Hot-Electron Conductivity and Diffusivity.- List of Symbols.- References.