Strings, Conformal Fields, and M-Theory

Strings, Conformal Fields, and M-Theory

Aus der Reihe

Fr. 126.00

inkl. gesetzl. MwSt.

Strings, Conformal Fields, and M-Theory

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 160.00
Taschenbuch

Taschenbuch

ab Fr. 126.00
eBook

eBook

ab Fr. 112.90

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

04.10.2012

Verlag

Springer Us

Seitenzahl

531

Maße (L/B/H)

23.5/15.5/3 cm

Beschreibung

Rezension

From the reviews:


"...because of its wide range in topics, it becomes extremely handy as a 'reference manual'...Kaku's book covers most of the 'hot topics' from the period 1985 through 1996 in a concise but still quite complete way, it fulfills this task in a superb way."
Physicalia


"¿ A comprehensive survey of essentially all recent research undertaken in string theory and related fields¿ the author¿s ability to present such an enormous variety of material is astonishing, resulting in a book that is up-to-date and thorough."
Physics Today

Details

Einband

Taschenbuch

Erscheinungsdatum

04.10.2012

Verlag

Springer Us

Seitenzahl

531

Maße (L/B/H)

23.5/15.5/3 cm

Gewicht

812 g

Auflage

2. Auflage

Sprache

Englisch

ISBN

978-1-4612-6792-8

Weitere Bände von Graduate Texts in Contemporary Physics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Strings, Conformal Fields, and M-Theory
  • I Conformal Field Theory and Perturbation Theory.- 1 Introduction to Superstrings.- 1.1 Quantizing the Relativistic String.- 1.2 Scattering Amplitudes.- 1.3 Supersymmetry.- 1.4 2D SUSY Versus 10D SUSY.- 1.5 Types of Strings.- 1.6 Summary.- 2 BPZ Bootstrap and Minimal Models.- 2.1 Conformal Symmetry in D Dimensions.- 2.2 Conformal Group in Two Dimensions.- 2.3 Representations of the Conformal Group.- 2.4 Fusion Rules and Correlations Function.- 2.5 Minimal Models.- 2.6 Fusion Rules for Minimal Models.- 2.7 Superconformal Minimal Series.- 2.8 Summary.- 3 WZW Model, Cosets, and Rational Conformal Field Theory.- 3.1 Compactification and the WZW Model.- 3.2 Frenkel—Kac Construction.- 3.3 GKO Coset Construction.- 3.4 Conformal and Current Blocks.- 3.5 Racah Coefficients for Rational Conformal Field Theory.- 3.6 Summary.- 4 Modular Invariance and the A—D—E Classification.- 4.1 Dehn Twists.- 4.2 Free Fermion and Boson Characters.- 4.3 GSO and Supersymmetry.- 4.4 Minimal Model Characters.- 4.5 Affine Characters.- 4.6 A—D—E Classification.- 4.7 Higher Invariants and Simple Currents.- 4.8 Diagonalizing the Fusion Rules.- 4.9 RCFT: Finite Number of Primary Fields.- 4.10 Summary.- N = 2 SUSY and Parafermions.- 5.1 Calabi—Yau Manifolds.- 5.2 N = 2 Superconformal Symmetry.- 5.3 N = 2 Minimal Series.- 5.4 N = 2 Minimal Models and Calabi—Yau Manifolds.- 5.5 Parafermions.- 5.6 Supersymmetric Coset Construction.- 5.7 Hermitian Spaces.- 5.8 Summary.- 6 Yang—Baxter Relation.- 6.1 Statistical Mechanics and Critical Exponents.- 6.2 One-Dimensional Ising Model.- 6.3 Two-Dimensional Ising Model.- 6.4 RSOS and Other Models.- 6.5 Yang—Baxter Relation.- 6.6 Solitons and the Yang—Baxter Equation.- 6.7 Summary.- 7 Toward a Classification of Conformal Field Theories.- 7.1 Feigin—Fuchs Free Fields.- 7.2 Free Field Realizations of Coset Theories.- 7.3 Landau—Ginzburg Potentials.- 7.4 N = 2 Chiral Rings.- 7.5 N = 2 Landau—Ginzburg and Catastrophe Theory.- 7.6 Zamolodchikov’s c Theorem.- 7.7 A—D—E Classification of c = 1 Theories.- 7.8 Summary.- 8 Knot Theory and Quantum Groups.- 8.1 Chern—Simons Approach to Conformal Field Theory.- 8.2 Elementary Knot Theory.- 8.3 Jones Polynomial and the Braid Group.- 8.4 Quantum Field Theory and Knot Invariants.- 8.5 Knots and Conformal Field Theory.- 8.6 New Knot Invariants from Physics.- 8.7 Knots and Quantum Groups.- 8.8 Hecke and Temperley—Lieb Algebras.- 8.9 Summary.- II Nonperturbative Methods.- 9 String Field Theory.- 9.1 First Versus Second Quantization.- 9.2 Light Cone String Field Theory.- 9.3 Free BRST Action.- 9.4 Interacting BRST String Field Theory.- 9.5 Four-Point Amplitude.- 9.6 Superstring Field Theory.- 9.7 Picture Changing.- 9.8 Superstring Action.- 9.9 Summary.- 10 Non polynomial String Field Theory.- 10.1 Four-String Interaction.- 10.2 N-Sided Polyhedra.- 10.3 Nonpolynomial Action.- 10.4 Conformal Maps.- 10.5 Tadpoles.- 10.6 Summary.- 11 2D Gravity and Matrix Models.- 11.1 Exactly Solvable Strings.- 11.2 2D Gravity and KPZ.- 11.3 Matrix Models.- 11.4 Recursion Relations.- 11.5 KdV Hierarchy.- 11.6 Multimatrix Models.- 11.7 D = 1 Matrix Models.- 11.8 Summary.- 12 Topological Field Theory.- 12.1 Unbroken Phase of String Theory.- 12.2 Topology and Morse Theory.- 12.3 Sigma Models and Floer Theory.- 12.4 Cohomological Topological Field Theories.- 12.5 Correlation Functions.- 12.6 Topological Sigma Models.- 12.7 Topological 2D Gravity.- 12.8 Correlation Functions for 2D Topological Gravity.- 12.9 Virasoro Constraint, W-Algebras, and KP Hierarchies.- 12.10 Summary.- 13 Seiberg—Witten Theory.- 13.1 Introduction.- 13.2 Electric—Magnetic Duality.- 13.3 Holomorphic Potentials.- 13.4 N = 1 SUSY QCD.- 13.4.1 Nf < Nc.- 13.4.2 Nf = Nc.- 13.4.3 Nf = Nc + 1.- 13.4.4 Nc + 2 ? Nf ? 3/2Nc.- 13.4.5 3/2Nc < Nf < 3Nc.- 13.4.6 N ? 3Nc.- 13.4.7 SO(Nc) SUSY Gauge Theory.- 13.5 N = 2 SUSY Gauge Theory.- 13.6 SU(N)N = 2 SUSY Gauge Theory.- 13.7 Summary.- 14 M-Theory and Duality.- 14.1 Introduction.- 14.2 Unifying the Five Superstring Theories.- 14.3 T Duality.- 14.4 S duality.- 14.4.1 Type IIA and M-Theory.- 14.4.2 Type IIB.- 14.4.3 Type I Strings.- 14.5 BPS States.- 14.6 Supersymmetry and p-Branes.- 14.7 Compactification.- 14.8 Example: D = 6.- 14.8.1 D = 6, N = (2, 2) Theory.- 14.8.2 D = 6, N = (1, 1) Theories.- 14.8.3 Deletions and Fibrations.- 14.9 F-Theory.- 14.10 Summary.- 15 D-Branes and CFT/ADS Duality.- 15.1 Solitons.- 15.2 Supermembrane Action.- 15.3 5-Branes and D-Branes.- 15.4 D-Brane Actions.- 15.5 M(atrix)-Theory and Membranes.- 15.6 Black Holes.- 15.7 CFT/ADS Duality.- 15.8 Anti-de Sitter Space.- 15.9 AdS and QCD.- 15.10 Summary.- 15.11 Conclusion.