Quantum Theory of Many-Body Systems

Quantum Theory of Many-Body Systems

Techniques and Applications

Aus der Reihe

Fr. 72.90

inkl. gesetzl. MwSt.
Gebundenes Buch

Gebundenes Buch

Fr. 112.00

Quantum Theory of Many-Body Systems

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 112.00
Taschenbuch

Taschenbuch

ab Fr. 72.90
eBook

eBook

ab Fr. 62.90

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

17.10.2012

Verlag

Springer Us

Seitenzahl

229

Maße (L/B/H)

23.5/15.5/1.4 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

17.10.2012

Verlag

Springer Us

Seitenzahl

229

Maße (L/B/H)

23.5/15.5/1.4 cm

Gewicht

382 g

Auflage

Softcover reprint of the original 1st ed. 1998

Sprache

Englisch

ISBN

978-1-4612-6831-4

Weitere Bände von Graduate Texts in Contemporary Physics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Quantum Theory of Many-Body Systems
  • 1 Basic Concepts.- 1.1 Introduction: Whys and Hows of Quantum Many-Body Theory.- 1.1.1 Screening of Coulomb Potential in Metal.- 1.1.2 Time-Dependent Effects. Plasmons.- 1.2 Propagation Function in a One-Body Quantum Theory.- 1.2.1 Propagator: Definition and Properties.- 1.2.2 Feynman’s Formulation of Quantum Mechanics: Path (Functional) Integrals.- 1.2.3 Quantum Transport in Mesoscopic Rings: Path Integral Description.- 1.3 Perturbation Theory for the Propagator.- 1.3.1 General Formalism.- 1.3.2 An Example: Potential Scattering.- 1.4 Second Quantization.- 1.4.1 Description of Large Collections of Identical Particles. Fock’s Space.- 1.4.2 Bosons.- 1.4.3 Number and Phase Operators and Their Uncertainty Relation.- 1.4.4 Fermions.- 1.5 Problems to Chapter 1.- 2 Green’s Functions at Zero Temperature.- 2.1 Green’s Function of The Many-Body System: Definition and Properties.- 2.1.1 Definition of Green’s Functions of the Many-Body System.- 2.1.2 Analytic Properties of Green’s Functions.- 2.1.3 Retarded and Advanced Green’s Functions.- 2.1.4 Green’s Function and Observables.- 2.2 Perturbation Theory: Feynman Diagrams.- 2.2.1 Derivation of Feynman Rules. Wick’s and Cancellation Theorems.- 2.2.2 Operations with Diagrams. Self Energy. Dyson’s Equation.- 2.2.3 Renormalization of the Interaction. Polarization Operator.- 2.2.4 Many-Particle Green’s Functions. Bethe—Salpeter Equations. Vertex Function.- 2.3 Problems to Chapter 2.- 3 More Green’s Functions, Equilibrium and Otherwise, and Their Applications.- 3.1 Analytic Properties of Equilibrium Green’s Functions.- 3.1.1 Statistical Operator (Density Matrix). The Liouville Equation.- 3.1.2 Definition and Analytic Properties of Equilibrium Green’s Functions.- 3.2 Matsubara formalism.- 3.2.1 Bloch’s Equation.- 3.2.2 Temperature (Matsubara) Green’s Function.- 3.2.3 Perturbation Series and Diagram Techniques for the Temperature Green’s Function.- 3.3 Linear Response Theory.- 3.3.1 Linear Response Theory. Kubo Formulas.- 3.3.2 Fluctuation-Dissipation Theorem.- 3.4 Nonequilibrium Green’s Functions.- 3.4.1 Nonequilibrium causal Green’s function: definition.- 3.4.2 Contour Ordering and Three More Nonequilibrium Green’s Functions.- 3.4.3 The Keldysh Formalism.- 3.5 Quantum Kinetic Equation.- 3.5.1 Dyson’s Equations for Nonequilibrium Green’s Functions.- 3.5.2 The Quantum Kinetic Equation.- 3.6 Application: Electrical Conductivity of Quantum Point Contacts.- 3.6.1 Quantum Electrical Conductivity in the Elastic Limit.- 3.6.2 Elastic Resistance of a Point Contact: Sharvin Resistance, the Landauer Formula, and Conductance Quantization 133.- 3.6.3 The Electron—Phonon Collision Integral in 3 D Quantum Point Contact.- 3.6.4 *Calculation of the Inelastic Component of the Point Contact Current.- 3.7 Method of Tunneling Hamiltonian.- 3.8 Problems to Chapter 3.- 4 Methods of the Many-Body Theory in Superconductivity.- 4.1 Introduction: General Picture of the Superconducting State.- 4.2 Instability of the Normal State.- 4.3 Pairing (BCS) Hamiltonian.- 4.3.1 Derivation of the BCS Hamiltonian.- 4.3.2 Diagonalization of the BCS Hamiltonian. The Bogoliubov transformation. Bogoliubov—de Gennes Equations..- 4.3.3 Bogolons.- 4.3.4 Thermodynamic Potential of a Superconductor.- 4.4 Green’s Functions of a Superconductor: The Nambu—Gor’kov Formalism.- 4.4.1 Matrix Structure of the Theory.- 4.4.2 Elements of the Strong Coupling Theory.- 4.4.3 Gorkov’s Equations for the Green’s Functions.- 4.4.4 Current-Carrying State of the Superconductor.- 4.4.5 Destruction of Superconductivity by Current.- 4.5 Andreev Reflection.- 4.5.1 The Proximity Effect in a Normal Metal in Contact With a Superconductor.- 4.5.2 Andreev Levels and Josephson Effect in a Clean SNS Junction.- 4.5.3 Josephson Current in a Short Ballistic Junction. Quantization of Critical Current in Quantum Point Contact.- 4.5.4 Josephson Current in a Long SNS Junction.- 4.5.5 *Transport in Superconducting Quantum Point Contact: The Keldysh Formalism Approach..- 4.6 Tunneling of Single Electrons and Cooper Pairs.- 4.6.1 Coulomb Blockade of Single-Electron Tunneling.- 4.6.2 Superconducting Grain: When One Electron Is Too Many..- 4.7 Problems to Chapter 4.- A Landauer Formalism for Hybrid Normal-Superconducting.- Structures.- A.1 The Landauer—Lambert formula.- A.2 Giant Conductance Oscillations in Ballistic Andreev Interferometers.- References.