Knowledge-Based Vision-Guided Robots
Band 103

Knowledge-Based Vision-Guided Robots

Aus der Reihe

Fr. 72.90

inkl. gesetzl. MwSt.

Knowledge-Based Vision-Guided Robots

Ebenfalls verfügbar als:

Taschenbuch

Taschenbuch

ab Fr. 72.90
eBook

eBook

ab Fr. 62.90

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

02.08.2012

Verlag

Physica

Seitenzahl

212

Maße (L/B/H)

23.5/15.5/1.4 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

02.08.2012

Verlag

Physica

Seitenzahl

212

Maße (L/B/H)

23.5/15.5/1.4 cm

Gewicht

385 g

Auflage

Softcover reprint of the original 1st ed. 2002

Sprache

Englisch

ISBN

978-3-662-00312-1

Weitere Bände von Studies in Fuzziness and Soft Computing

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Knowledge-Based Vision-Guided Robots
  • 1 Introduction.- 1.1 Background.- 1.1.1 A vision-guided approach.- 1.1.2 Computer vision and vision-guided mobile robots.- 1.1.3 Applying high-level computer vision to guide mobile robots.- 1.2 Aims of the Research Presented in this Book: A Problem in Robot Vision.- 1.3 The Approach of this Book.- 1.4 About the Chapters.- 2 Related Systems and Ideas.- 2.1 Basic computer vision approaches.- 2.1.1 Frame-based computer vision.- 2.1.2 Active vision.- 2.2 Vision-Guided Mobile Robot Systems.- 2.2.1 Mobile robot subsystems and concepts.- 2.2.2 Mobile robot object recognition.- 2.2.3 Maps and path planning.- 2.2.4 Temporal sequencing for complex tasks.- 2.2.5 Vision-guided mobile robot systems.- 2.2.6 Reactive navigation.- 2.2.7 Model-based vision systems for mobile robots.- 2.2.8 Knowledge-based mobile robotic systems.- 2.2.9 Vision-guided mobile robots using stereo.- 2.2.10 Active perception systems for mobile robots.- 2.2.11 Application of vision-guided mobile robots.- 2.3 Computer Vision for Mobile Robots.- 2.3.1 Traditional model-based vision 3D object recognition.- 2.3.2 Shape-from-shading.- 2.3.3 Pose determination.- 2.4 Conclusion.- 3 Embodied Vision For Mobile Robots.- 3.1 Introduction.- 3.1.1 Embodiment.- 3.1.2 Phenomena and noumena.- 3.2 The Classical Computer Vision Paradigm.- 3.2.1 Non-classical computer vision.- 3.3 Problems with Classical Computer Vision.- 3.4 Applying Embodied Concepts in Human Vision.- 3.4.1 Models play an analogous role in computer vision.- 3.5 Embodiment of Vision-guided Robots.- 3.5.1 Embodiment, task and environment.- 3.5.2 The role of the task.- 3.5.3 The role of the environment.- 3.6 Embodiment for Vision-guided Robots.- 3.6.1 Physical embodiment.- 3.6.2 Embodiment in a task.- 3.6.3 Embodiment in an environment.- 3.7 Conclusion.- 4 Object Recognition Mobile Robot Guidance.- 4.1 Introduction.- 4.2 System Perspective.- 4.3 Object Recognition.- 4.3.1 Canonical-views.- 4.3.2 Match verification.- 4.3.3 Edge matching.- 4.3.4 Edge-based features for ground-based robots.- 4.3.5 View prediction.- 4.4 Determining Object Pose and Distance.- 4.4.1 Active determination of the sign of ?.- 4.4.2 Error analysis.- 4.5 Conclusion.- 5 Edge Segmentation and Matching.- 5.1 Edge Extraction.- 5.1.1 Edge extraction.- 5.1.2 On the choice of window size and quantisation of ? and ?.- 5.2 Edge Matching.- 5.2.1 Evaluating matches.- 5.2.2 Spatial elimination.- 5.2.3 Edge coverage.- 5.2.4 Position estimation consistency.- 5.2.5 Geometric verification.- 5.2.6 Quadratic edge extraction.- 5.2.7 Further active processing.- 6 Knowledge Based Shape from Shading.- 6.1 Introduction.- 6.1.1 Motivation and system perspective.- 6.1.2 Assumptions.- 6.1.3 Knowledge-based representation of objects.- 6.2 Using Object Model Knowledge for Shape-From-Shading.- 6.3 A New Boundary Condition for Shape-From-Shading.- 6.4 Knowledge-based Implementation.- 6.4.1 Knowledge / frame topology.- 6.4.2 Fact knowledge.- 6.4.3 Procedural knowledge.- 6.4.4 Shape processing rulebase.- 6.5 Experimental Method and Results.- 6.5.1 Synthetic images.- 6.5.2 Real images.- 6.5.3 Domain knowledge.- 6.6 Conclusion.- 7 Supporting Navigation Components.- 7.1 Model-based Path Planning.- 7.1.1 Path planning and obstacle avoidance.- 7.2 Odometry and Obstacle Avoidance Subsystem.- 7.2.1 Obstacle avoidance strategies.- 7.2.2 Coordinate transforms.- 8 Fuzzy Control for Active Perceptual Docking.- 8.1 Introduction.- 8.1.1 Fuzzy control.- 8.1.2 Fuzzy control for mobile robot control.- 8.1.3 TSK fuzzy model.- 8.1.4 Visual motion-based approaches to mobile robots and the docking problem.- 8.2 Direction Control for Robot Docking.- 8.2.1 The log-polar camera.- 8.2.2 Docking for a ground-based robot.- 8.2.3 Noise in the input parameter.- 8.3 A Fuzzy Control Scheme.- 8.4 Results.- 8.5 Conclusion.- 9 System Results and Case Studies.- 9.1 Evaluation of Components.- 9.1.1 Experimental setup.- 9.1.2 View matching.- 9.1.3 Pose determination — power supply.- 9.1.4 Pose determination — model vehicle.- 9.2 Case Studies.- 9.2.1 Moving around the corner of an object.- 9.2.2 Distinguishing a particular object among similar objects.- 9.2.3 Docking.- 9.2.4 Object circumnavigation.- 9.2.5 Obstacle avoidance.- 9.3 Conclusion.- 10 Conclusion.- 10.1 Limitations of the Research Presented and Future Work.- 10.2 Extended quotation from Descartes.