Lectures on the Geometry of Poisson Manifolds
Band 118

Lectures on the Geometry of Poisson Manifolds

Aus der Reihe

Fr. 72.90

inkl. gesetzl. MwSt.

Lectures on the Geometry of Poisson Manifolds

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 153.00
Taschenbuch

Taschenbuch

ab Fr. 72.90
eBook

eBook

ab Fr. 62.90

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

23.10.2012

Verlag

Springer Basel

Seitenzahl

206

Maße (L/B/H)

23.5/15.5/1.3 cm

Beschreibung

Rezension

    "The book serves well as an introduction and an overview of the subject and a long list of references helps with further study."   

  -- Zbl. Math.   


    "The book is well done...should be an essential purchase for mathematics libraries and is likely to be a standard reference for years to come, providing an introduction to an attractive area of further research."  --   Mathematical Reviews   


    "The importance and actuality of the subject, as well as the very rigorous and didactic presentation of the content, make out of this book a valuable contribution to current mathematics. The book is intended first of all to mathematicians, but it can be interesting also for a wide circle of readers, including mechanicists and physicists."    -- Mathematica   

Details

Einband

Taschenbuch

Erscheinungsdatum

23.10.2012

Verlag

Springer Basel

Seitenzahl

206

Maße (L/B/H)

23.5/15.5/1.3 cm

Gewicht

343 g

Auflage

Softcover reprint of the original 1st ed. 1994

Sprache

Englisch

ISBN

978-3-0348-9649-8

Weitere Bände von Progress in Mathematics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Lectures on the Geometry of Poisson Manifolds
  • 0 Introduction.- 1 The Poisson bivector and the Schouten-Nijenhuis bracket.- 1.1 The Poisson bivector.- 1.2 The Schouten-Nijenhuis bracket.- 1.3 Coordinate expressions.- 1.4 The Koszul formula and applications.- 1.5 Miscellanea.- 2 The symplectic foliation of a Poisson manifold.- 2.1 General distributions and foliations.- 2.2 Involutivity and integrability.- 2.3 The case of Poisson manifolds.- 3 Examples of Poisson manifolds.- 3.1 Structures on ?n. Lie-Poisson structures.- 3.2 Dirac brackets.- 3.3 Further examples.- 4 Poisson calculus.- 4.1 The bracket of 1-forms.- 4.2 The contravariant exterior differentiations.- 4.3 The regular case.- 4.4 Cofoliations.- 4.5 Contravariant derivatives on vector bundles.- 4.6 More brackets.- 5 Poisson cohomology.- 5.1 Definition and general properties.- 5.2 Straightforward and inductive computations.- 5.3 The spectral sequence of Poisson cohomology.- 5.4 Poisson homology.- 6 An introduction to quantization.- 6.1 Prequantization.- 6.2 Quantization.- 6.3 Prequantization representations.- 6.4 Deformation quantization.- 7 Poisson morphisms, coinduced structures, reduction.- 7.1 Properties of Poisson mappings.- 7.2 Reduction of Poisson structures.- 7.3 Group actions and momenta.- 7.4 Group actions and reduction.- 8 Symplectic realizations of Poisson manifolds.- 8.1 Local symplectic realizations.- 8.2 Dual pairs of Poisson manifolds.- 8.3 Isotropic realizations.- 8.4 Isotropic realizations and nets.- 9 Realizations of Poisson manifolds by symplectic groupoids.- 9.1 Realizations of Lie-Poisson structures.- 9.2 The Lie groupoid and symplectic structures of T*G.- 9.3 General symplectic groupoids.- 9.4 Lie algebroids and the integrability of Poisson manifolds.- 9.5 Further integrability results.- 10 Poisson-Lie groups.- 10.1 Poisson-Lie and biinvariant structures on Lie groups.- 10.2 Characteristic properties of Poisson-Lie groups.- 10.3 The Lie algebra of a Poisson-Lie group.- 10.4 The Yang-Baxter equations.- 10.5 Manin triples.- 10.6 Actions and dressing transformations.- References.