Introduction to Liaison Theory and Deficiency Modules
Band 165

Introduction to Liaison Theory and Deficiency Modules

Aus der Reihe

Introduction to Liaison Theory and Deficiency Modules

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 137.00
Taschenbuch

Taschenbuch

ab Fr. 137.00
eBook

eBook

ab Fr. 125.90

Fr. 137.00

inkl. MwSt, Versandkostenfrei

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

21.10.2012

Verlag

Birkhäuser Boston

Seitenzahl

218

Maße (L/B/H)

23.5/15.5/1.3 cm

Beschreibung

Rezension

"Suitable for a graduate course in algebraic geometry...numerous discussions about the historical development, and...an ample and useful list of references to important original sources... Relations between linked schemes...are explained in great detail, with complete proofs and numerous examples. ...The book ends with a section which gives a flavour of some of the ways in which liaison theory has been applied in the literature. Many more applications and examples are spread throughout the text. They contribute to a lively and inspiring style. This book is a worthwhile addition to every algebraic geometer's library."


--Mathematical Reviews


"A highly specialized monograph that provides a very good introduction to contemporary research in the fields of liaison theory and deficiency modules... The author pays great attention to motivation and the geometric aspects of the theory. There are many examples through which the reader is introduced into the theory, thereby stimulating research in the field... Useful both for specialists and for postgraduate students."


--EMS Newsletter

Details

Einband

Taschenbuch

Erscheinungsdatum

21.10.2012

Verlag

Birkhäuser Boston

Seitenzahl

218

Maße (L/B/H)

23.5/15.5/1.3 cm

Gewicht

376 g

Auflage

2nd ed. 1998. Softcover reprint of the original 2nd ed. 1998

Sprache

Englisch

ISBN

978-1-4612-7286-1

Herstelleradresse

Birkhäuser Boston
675 Massachussetts Avenue
02139 Cambridge, MA
US
Email: orders@birkhauser.com
Url: www.birkhauser.com
Telephone: +1 617 8762333
Fax: +1 201 3484033

Weitere Bände von Progress in Mathematics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Introduction to Liaison Theory and Deficiency Modules
  • 1 Background.- 1.1 Finitely Generated Graded S-Modules.- 1.2 The Deficiency Modules (Mi)(V).- 1.3 Hyperplane and Hypersurface Sections.- 1.4 Artinian Reductions and h-Vectors.- 1.5 Examples.- 2 Submodules of the Deficiency Module.- 2.1 Measuring Deficiency.- 2.2 Generalizing Dubreil’s Theorem.- 2.3 Lifting the Cohen-Macaulay Property.- 3 Buchsbaum Curves and Liaison Addition.- 3.1 Buchsbaum Curves.- 3.2 Liaison Addition.- 3.3 Constructing Buchsbaum Curves in P3.- 4 Gorenstein Subschemes of Projective Space.- 4.1 Basic Results on Gorenstein Ideals.- 4.2 Constructions of Gorenstein Schemes.- 4.2.1 Intersection of Linked Schemes.- 4.2.2 Sections of Buchsbaum-Rim Sheaves of Odd Rank.- 4.2.3 Linear Systems on aCM Schemes.- 4.3 Codimension Three Gorenstein Ideals.- 5 Liaison Theory in Arbitrary Codimension.- 5.1 Definitions and First Examples.- 5.2 Relations Between Linked Schemes.- 5.3 The Hartshorne-Schenzel Theorem.- 5.4 The Structure of an Even Liaison Class.- 5.5 Geometric Invariants of a Liaison Class.- 6 Liaison Theory in Codimension Two.- 6.1 The aCM Situation and Generalizations.- 6.2 Rao’s Results.- 6.3 The Lazarsfeld-Rao Property.- 6.4 Applications.- 6.4.1 Smooth Curves in P3.- 6.4.2 Smooth Surfaces in IP4 and Threefolds in P5.- 6.4.3 Possible Degrees and Genera in a Codimension Two Even Liaison Class.- 6.4.4 Stick Figures.- 6.4.5 Low Rank Vector Bundles and Schemes Defined by a Small Number of Equations.