Algebraic Geometry
Band 76

Algebraic Geometry

An Introduction to Birational Geometry of Algebraic Varieties

Aus der Reihe

Fr. 126.00

inkl. gesetzl. MwSt.

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

14.10.2011

Verlag

Springer Us

Seitenzahl

357

Maße (L/B/H)

23.5/15.5/2.1 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

14.10.2011

Verlag

Springer Us

Seitenzahl

357

Maße (L/B/H)

23.5/15.5/2.1 cm

Gewicht

563 g

Auflage

1982

Sprache

Englisch

ISBN

978-1-4613-8121-1

Weitere Bände von Graduate Texts in Mathematics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Algebraic Geometry
  • 1 Schemes.- 1.1 Spectra of Rings.- 1.2 Examples of Spectra as Topological Spaces.- 1.3 Rings of Fractions, the Case Af.- 1.4 Rings and Modules of Fractions.- 1.5 Nullstellensatz.- 1.6 Irreducible Spaces.- 1.7 Integral Extension of Rings.- 1.8 Hilbert Nullstellensatz.- 1.9 Dimension of Spec A.- 1.10 Sheaves.- 1.11 Structure of Sheaves on Spectra.- 1.12 Quasi-coherent Sheaves and Coherent Sheaves.- 1.13 Reduced Affine Schemes and Integral Affine Schemes.- 1.14 Morphism of Affine Schemes.- 1.15 Definition of Schemes and First Properties.- 1.16 Subschemes.- 1.17 Glueing Schemes.- 1.18 Projective Spaces.- 1.19 S-Schemes and Automorphism of Schemes.- 1.20 Product of S-Schemes.- 1.21 Base Extension.- 1.22 Graphs of Morphisms.- 1.23 Separated Schemes.- 1.24 Regular Functions and Rational Functions.- 1.25 Rational Maps.- 1.26 Morphisms of Finite Type.- 1.27 Affine Morphisms and Integral Morphisms.- 1.28 Proper Morphisms and Finite Morphisms.- 1.29 Algebraic Varieties.- 2 Normal Varieties.- 2.1 Normal Rings.- 2.2 Normal Points on Schemes.- 2.3 Unique Factorization Domains.- 2.4 Primary Decomposition of Ideals.- 2.5 Intersection Theorem and Complete Local Rings.- 2.6 Regular Local Rings.- 2.7 Normal Points on Algebraic Curves and Extension Theorems.- 2.8 Divisors on a Normal Variety.- 2.9 Linear Systems.- 2.10 Domain of a Rational Map.- 2.11 Pullback of a Divisor.- 2.12 Strictly Rational Maps.- 2.13 Connectedness Theorem.- 2.14 Normalization of Varieties.- 2.15 Degree of a Morphism and a Rational Map.- 2.16 Inverse Image Sheaves.- 2.17 The Pullback Theorem.- 2.18 Invertible Sheaves.- 2.19 Rational Sections of an Invertible Sheaf.- 2.20 Divisors and Invertible Sheaves.- 3 Projective Schemes.- 3.1 Graded Rings.- 3.2 Homogeneous Spectra.- 3.3 Finitely Generated Graded Rings.- 3.4 Construction of Projective Schemes.- 3.5 Some Properties of Projective Schemes.- 3.6 Chow’s Lemma.- 4 Cohomology of Sheaves.- 4.1 Injective Sheaves.- 4.2 Fundamental Theorems.- 4.3 Flabby Sheaves.- 4.4 Cohomology of Affine Schemes.- 4.5 Finiteness Theorem.- 4.6 Leray’s Spectral Sequence.- 4.7 Cohomology of Affme Morphisms.- 4.8 Riemann-Roch Theorem (in the Weak Form) on a Curve.- 5 Regular Forms and Rational Forms on a Variety.- 5.1 Modules of Regular Forms and Canonical Derivations.- 5.2 Lemmas.- 5.3 Sheaves of Regular Forms.- 5.4 Birational Invariance of Genera.- 5.5 Adjunction Formula.- 5.6 Ramification Formula.- 5.7 Generalized Adjunction Formula and Conductors.- 5.8 Serre Duality.- 6 Theory of Curves.- 6.1 Riemann-Roch Theorem.- 6.2 Fujita’s Invariant ? (C, D).- 6.3 Degree of a Curve.- 6.4 Hyperplane Section Theorem.- 6.5 Hyperelliptic Curves.- 6.6 ?-Gap Sequence and Weierstrass Points.- 6.7 Wronski Forms.- 6.8 Theorems of Hurwitz and Automorphism Groups of Curves.- 7 Cohomology of Projective Schemes.- 7.1 The Homomorphism ?M.- 7.2 The Homomorphism ?
    ?.- 7.3 Cohomology Groups of Coherent Sheaves on PnR.- 7.4 Ample Sheaves.- 7.5 Projective Morphisms.- 7.6 Unscrewing Lemma and Its Applications.- 7.7 Projective Normality.- 7.8 Etale Morphisms.- 7.9 Theorems of Bertini.- 7.10 Monoidal Transformations.- 8 Intersection Theory of Divisors.- 8.1 Intersection Number of Curves on a Surface.- 8.2 Riemann-Roch Theorem on an Algebraic Surface.- 8.3 Intersection Matrix of a Divisor.- 8.4 Intersection Numbers of Invertible Sheaves.- 8.5 Nakai’s Criterion on Ample Sheaves.- 9 Curves on a Nonsingular Surface.- 9.1 Quadric Transformations.- 9.2 Local Properties of Singular Points.- 9.3 Linear Pencil Theorem.- 9.4 Dual Curves and Plucker Relations.- 9.5 Decomposition of Birational Maps.- 10 D-Dimension and Kodaira Dimension of Varieties.- 10.1 D-Dimension.- 10.2 The Asymptotic Estimate for l(mD).- 10.3 Fundamental Theorems for D-Dimension.- 10.4 D-Dimensions of a K3 Surface and an Abelian Variety.- 10.5 Kodaira Dimension.- 10.6 Types of Varieties.- 10.7 Subvarieties of an Abelian Variety.- 11 Logarithmic Kodaira Dimension of Varieties.- 11.1 Logarithmic Forms.- 11.2 Logarithmic Genera.- 11.3 Reduced Divisor as a Boundary.- 11.4 Logarithmic Ramification Formula.- 11.5 Étale Endomorphisms.- 11.6 Logarithmic Canonical Fibered Varieties’.- 11.7 Finiteness of the Group SBir(V).- 11.8 Some Applications.- References.