ECML PKDD 2018 Workshops

Nemesis 2018, UrbReas 2018, SoGood 2018, IWAISe 2018, and Green Data Mining 2018, Dublin, Ireland, September 10-14, 2018, Proceedings

Lecture Notes in Computer Science Band 11329

Buch (Taschenbuch, Englisch)
Buch (Taschenbuch, Englisch)
Fr. 76.90
Fr. 76.90
inkl. gesetzl. MwSt.
inkl. gesetzl. MwSt.
Versandfertig innert 1 - 2 Werktagen Versandkostenfrei
Versandfertig innert 1 - 2 Werktagen
Versandkostenfrei

Weitere Formate

Taschenbuch

ab Fr. 71.90

Accordion öffnen
  • ECML PKDD 2018 Workshops

    Springer

    Versandfertig innert 1 - 2 Werktagen

    Fr. 71.90

    Springer
  • ECML PKDD 2018 Workshops

    Springer

    Versandfertig innert 1 - 2 Werktagen

    Fr. 76.90

    Springer
  • ECML PKDD 2018 Workshops

    Springer

    Versandfertig innert 6 - 9 Werktagen

    Fr. 84.90

    Springer

eBook

ab Fr. 62.90

Accordion öffnen
  • ECML PKDD 2018 Workshops

    PDF (Springer)

    Sofort per Download lieferbar

    Fr. 62.90

    PDF (Springer)
  • ECML PKDD 2018 Workshops

    PDF (Springer)

    Sofort per Download lieferbar

    Fr. 72.90

    PDF (Springer)
  • ECML PKDD 2018 Workshops

    PDF (Springer)

    Sofort per Download lieferbar

    Fr. 75.90

    PDF (Springer)

Beschreibung

This book constitutes revised selected papers from the workshops Nemesis, UrbReas, SoGood, IWAISe, and Green Data Mining, held at the 18 th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, in Dublin, Ireland, in September 2018. 

The 20 papers presented in this volume were carefully reviewed and selected from a total of 32 submissions.

The workshops included are:


Nemesis 2018: First Workshop on Recent Advances in Adversarial Machine Learning

UrbReas 2018: First International Workshop on Urban Reasoning from Complex Challenges in Cities


SoGood 2018: Third Workshop on Data Science for Social Good

IWAISe 2018: Second International Workshop on Artificial Intelligence in Security


Green Data Mining 2018: First International Workshop on Energy Efficient Data Mining and Knowledge Discovery

Produktdetails

Einband Taschenbuch
Herausgeber Anna Monreale, Carlos Alzate, Haytham Assem, Albert Bifet, Maria-Irina Nicolae
Seitenzahl 257
Erscheinungsdatum 16.02.2019
Sprache Englisch
ISBN 978-3-030-13452-5
Verlag Springer
Maße (L/B/H) 23.5/15.5/1.4 cm
Gewicht 407 g
Abbildungen 33 schwarzweisse Abbilmit 59 FarbabbildungenFarbabb.
Auflage 1st ed. 2019

Weitere Bände von Lecture Notes in Computer Science

Kundenbewertungen

Es wurden noch keine Bewertungen geschrieben.
  • Artikelbild-0
  • Label Sanitization against Label Flipping Poisoning Attacks.- Limitations of the Lipschitz constant as a Defense Against Adversarial Examples.- Understanding Adversarial Space through the Lens of Attribution.- Detecting Potential Local Adversarial Examples for Human-Interpretable Defense.- Smart Cities with Deep Edges.- Computational Model for Urban Growth Using Socioeconomic Latent Parameters.- Object Geolocation from Crowdsourced Street Level Imagery.- Extending Support Vector Regression to Constraint Optimization: Application to the Reduction of Potentially Avoidable Hospitalizations.- SALER: a Data Science Solution to Detect and Prevent Corruption in Public Administration.- MaaSim: A Liveability Simulation for Improving the Quality of Life in Cities.- Designing Data-Driven Solutions to Societal Problems: Challenges and Approaches.- Host based Intrusion Detection System with Combined CNN/RNN Model.- Cyber Attacks against the PC Learning Algorithm.- Neural Networks in an Adversarial Setting and Ill-Conditioned Weight Space.- Pseudo-Random Number Generation using Generative Adversarial Networks.- Context Delegation for Context-Based Access Control.- An Information Retrieval System For CBRNe Incidents.- A Virtual Testbed for Critical Incident Investigation with Autonomous Remote Aerial Vehicle Surveying, Artificial Intelligence, and Decision Support.- Event relevancy pruning in support of energy-efficient sequential pattern mining.- How to Measure Energy Consumption in Machine Learning Algorithms.