Reinforcement Learning, second edition

An Introduction

The Springer International Series in Engineering and Computer Science Band 173

Richard S. Sutton, Andrew G. Barto

Die Leseprobe wird geladen.
eBook
eBook
Fr. 99.90
Fr. 99.90
inkl. gesetzl. MwSt.
inkl. gesetzl. MwSt.
Sofort per Download lieferbar
Sofort per Download lieferbar
Sie können dieses eBook verschenken  i

Weitere Formate

Taschenbuch

Fr. 233.00

Accordion öffnen
  • Reinforcement Learning

    Springer Us

    Versandfertig innert 6 - 9 Werktagen

    Fr. 233.00

    Springer Us

gebundene Ausgabe

ab Fr. 110.00

Accordion öffnen
  • Reinforcement Learning

    MIT Press

    Versandfertig innert 1 - 2 Werktagen

    Fr. 110.00

    MIT Press
  • Reinforcement Learning

    Springer Us

    Versandfertig innert 6 - 9 Werktagen

    Fr. 329.00

    Springer Us

eBook

ab Fr. 91.90

Accordion öffnen

Beschreibung

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence.

Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.

Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Richard S. Sutton is Professor of Computing Science and AITF Chair in Reinforcement Learning and Artificial Intelligence at the University of Alberta, and also Distinguished Research Scientist at DeepMind.

Andrew G. Barto is Professor Emeritus in the College of Computer and Information Sciences at the University of Massachusetts Amherst.

Produktdetails

Format ePUB 3 i
Kopierschutz Ja i
Family Sharing Ja i
Text-to-Speech Ja i
Seitenzahl 552 (Printausgabe)
Erscheinungsdatum 13.11.2018
Sprache Englisch
EAN 9780262352703
Verlag MIT Press
Dateigröße 21011 KB

Kundenbewertungen

Es wurden noch keine Bewertungen geschrieben.

  • Artikelbild-0