Deep Learning

Ian Goodfellow, Yoshua Bengio, Aaron Courville

(1)
eBook
eBook
Fr. 100.90
Fr. 100.90
inkl. gesetzl. MwSt.
inkl. gesetzl. MwSt.
Sofort per Download lieferbar
Sofort per Download lieferbar
Sie können dieses eBook verschenken  i

Weitere Formate

gebundene Ausgabe

Fr. 109.00

Accordion öffnen
  • Deep Learning

    MIT Press

    Versandfertig innert 1 - 2 Werktagen

    Fr. 109.00

    MIT Press

eBook (ePUB 3)

Fr. 100.90

Accordion öffnen

Beschreibung

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.”
—Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Ian Goodfellow is a Research Scientist at Google.

Yoshua Bengio is Professor of Computer Science at the Université de Montréal.

Aaron Courville is Assistant Professor of Computer Science at the Université de Montréal.

Produktdetails

Format ePUB 3 i
Kopierschutz Ja i
Family Sharing Ja i
Text-to-Speech Ja i
Seitenzahl 800 (Printausgabe)
Erscheinungsdatum 10.11.2016
Sprache Englisch
EAN 9780262337373
Verlag MIT Press
Dateigröße 26776 KB

Kundenbewertungen

Durchschnitt
1 Bewertungen
Übersicht
1
0
0
0
0

Essential
von einer Kundin/einem Kunden am 21.10.2017
Bewertet: Einband: gebundene Ausgabe

Must have handbook. Essential for Machine Learning professionals. Well structured with good examples and relatively easy to understand even for beginners.


  • Artikelbild-0