Lectures on Probability Theory and Statistics

Ecole d' Ete de Probabilites de Saint-Flour XXVII, 1997

École d'Été de Probabilités de Saint-Flour Band 1717

J. Bertoin, F. Martinelli, Y. Peres

Buch (Taschenbuch, Englisch)
Buch (Taschenbuch, Englisch)
Fr. 56.90
Fr. 56.90
inkl. gesetzl. MwSt.
inkl. gesetzl. MwSt.
Versandfertig innert 6 - 9 Werktagen Versandkostenfrei
Versandfertig innert 6 - 9 Werktagen
Versandkostenfrei

Weitere Formate

Taschenbuch

ab Fr. 49.90

Accordion öffnen
  • Lectures on Probability Theory and Statistics

    Springer Berlin

    Versandfertig innert 6 - 9 Werktagen

    Fr. 49.90

    Springer Berlin
  • Lectures on Probability Theory and Statistics

    Springer Berlin

    Versandfertig innert 6 - 9 Werktagen

    Fr. 51.90

    Springer Berlin
  • Lectures on Probability Theory and Statistics

    Springer Berlin

    Versandfertig innert 6 - 9 Werktagen

    Fr. 56.90

    Springer Berlin
  • Lectures on Probability Theory and Statistics

    Springer Berlin

    Versandfertig innert 6 - 9 Werktagen

    Fr. 56.90

    Springer Berlin
  • Lectures on Probability Theory and Statistics

    Springer Berlin

    Versandfertig innert 6 - 9 Werktagen

    Fr. 68.90

    Springer Berlin
  • Lectures on Probability Theory and Statistics

    Springer Berlin

    Versandfertig innert 6 - 9 Werktagen

    Fr. 73.90

    Springer Berlin
  • Lectures on Probability Theory and Statistics

    Springer Berlin

    Versandfertig innert 6 - 9 Werktagen

    Fr. 74.90

    Springer Berlin

eBook

ab Fr. 68.90

Accordion öffnen
  • Lectures on Probability Theory and Statistics

    PDF (Springer)

    Sofort per Download lieferbar

    Fr. 68.90

    PDF (Springer)
  • Lectures on Probability Theory and Statistics

    PDF (Springer)

    Sofort per Download lieferbar

    Fr. 68.90

    PDF (Springer)

Beschreibung

From the contents: Subordinators: Examples and Applications: Foreword.- Elements on subordinators.- Regenerative property.- Asymptotic behaviour of last passage times.- Rates of growth of local time.- Geometric properties of regenerative sets.- Burgers equation with Brownian initial velocity.- Random covering.- L¿ processes.- Occupation times of a linear Brownian motion.- Lectures on Glauber Dynamics for Discrete Spin Models: Introduction.- Gibbs Measures of Lattice Spin Models.- The Glauber Dynamics.- One Phase Region.- Boundary Phase Transitions.- Phase Coexistence.- Glauber Dynamics for the Dilute Ising Model.- Probability on Trees: An Introductory Climb: Preface.- Basic Definitions and a Few Highlights.- Galton-Watson Trees.- General percolation on a connected graph.- The first-Moment method.- Quasi-independent Percolation.- The second Moment Method.- Electrical Networks.- Infinite Networks.- The Method of Random Paths.- Transience of Percolation Clusters.- Subperiodic Trees.- .....

Produktdetails

Einband Taschenbuch
Erscheinungsdatum 17.11.1999
Herausgeber Pierre Bernard
Verlag Springer Berlin
Seitenzahl 298
Maße (L/B/H) 23.5/15.5/1.6 cm
Gewicht 960 g
Auflage 1999
Sprache Englisch
ISBN 978-3-540-66593-9

Weitere Bände von École d'Été de Probabilités de Saint-Flour

Kundenbewertungen

Es wurden noch keine Bewertungen geschrieben.
  • artikelbild-0
  • Part I, Bertoin, J.: Subordinators: Examples and Applications:

    Foreword.- Elements on subordinators.- Regenerative property.- Asymptotic behaviour of last passage times.- Rates of growth of local time.- Geometric properties of regenerative sets.- Burgers equation with Brownian initial velocity.- Random covering.- Lévy processes.- Occupation times of a linear Brownian motion.-

    Part II, Martinelli, F.: Lectures on Glauber Dynamics for Discrete Spin Models: Introduction.- Gibbs Measures of Lattice Spin Models.- The Glauber Dynamics.- One Phase Region.- Boundary Phase Transitions.- Phase Coexistence.- Glauber Dynamics for the Dilute Ising Model.-

    Part III, Peres, Yu.: Probability on Trees: An Introductory Climb: Preface.- Basic Definitions and a Few Highlights.- Galton-Watson Trees.- General percolation on a connected graph.- The first-Moment method.- Quasi-independent Percolation.- The second Moment Method.- Electrical Networks.- Infinite Networks.- The Method of Random Paths.- Transience of Percolation Clusters.- Subperiodic Trees.- The Random Walks RW (lambda) .- Capacity.-.Intersection-Equivalence.- Reconstruction for the Ising Model on a Tree,- Unpredictable Paths in Z and EIT in Z3.- Tree-Indexed Processes.- Recurrence for Tree-Indexed Markov Chains.- Dynamical Pecsolation.- Stochastic Domination Between Trees.