Numerical Analysis for Statisticians

Kenneth Lange

Buch (gebundene Ausgabe, Englisch)
Buch (gebundene Ausgabe, Englisch)
Fr. 166.00
Fr. 166.00
inkl. gesetzl. MwSt.
inkl. gesetzl. MwSt.
Versandfertig innert 1 - 2 Werktagen Versandkostenfrei
Versandfertig innert 1 - 2 Werktagen
Versandkostenfrei

Weitere Formate

Taschenbuch

Fr. 117.00

Accordion öffnen
  • Numerical Analysis for Statisticians

    Springer Us

    Versandfertig innert 6 - 9 Werktagen

    Fr. 117.00

    Springer Us

gebundene Ausgabe

Fr. 166.00

Accordion öffnen
  • Numerical Analysis for Statisticians

    Springer Us

    Versandfertig innert 1 - 2 Werktagen

    Fr. 166.00

    Springer Us

eBook (PDF)

Fr. 106.90

Accordion öffnen
  • Numerical Analysis for Statisticians

    PDF (Springer)

    Sofort per Download lieferbar

    Fr. 106.90

    PDF (Springer)

Beschreibung

Every advance in computer architecture and software tempts statisticians to tackle numerically harder problems. To do so intelligently requires a good working knowledge of numerical analysis. This book equips students to craft their own software and to understand the advantages and disadvantages of different numerical methods. Issues of numerical stability, accurate approximation, computational complexity, and mathematical modeling share the limelight in a broad yet rigorous overview of those parts of numerical analysis most relevant to statisticians.
In this second edition, the material on optimization has been completely rewritten. There is now an entire chapter on the MM algorithm in addition to more comprehensive treatments of constrained optimization, penalty and barrier methods, and model selection via the lasso. There is also new material on the Cholesky decomposition, Gram-Schmidt orthogonalization, the QR decomposition, the singular value decomposition, and reproducing kernel Hilbert spaces. The discussions of the bootstrap, permutation testing, independent Monte Carlo, and hidden Markov chains are updated, and a new chapter on advanced MCMC topics introduces students to Markov random fields, reversible jump MCMC, and convergence analysis in Gibbs
sampling.
Numerical Analysis for Statisticians can serve as a graduate text for a course surveying computational statistics. With a careful selection of topics and appropriate supplementation, it can be used at the undergraduate level. It contains enough material for a graduate course on optimization theory. Because many chapters are nearly self-contained, professional statisticians will also find the book useful as a reference.

Produktdetails

Einband gebundene Ausgabe
Seitenzahl 600
Erscheinungsdatum 15.06.2010
Sprache Englisch
ISBN 978-1-4419-5944-7
Reihe Statistics and Computing
Verlag Springer Us
Maße (L/B/H) 24.4/16.1/4.3 cm
Gewicht 2300 g
Auflage 2nd ed. 2010

Kundenbewertungen

Es wurden noch keine Bewertungen geschrieben.
  • Artikelbild-0
  • Recurrence Relations.- Power Series Expansions.- Continued Fraction Expansions.- Asymptotic Expansions.- Solution of Nonlinear Equations.- Vector and Matrix Norms.- Linear Regression and Matrix Inversion.- Eigenvalues and Eigenvectors.- Singular Value Decomposition.- Splines.- Optimization Theory.- The MM Algorithm.- The EM Algorithm.- Newton’s Method and Scoring.- Local and Global Convergence.- Advanced Optimization Topics.- Concrete Hilbert Spaces.- Quadrature Methods.- The Fourier Transform.- The Finite Fourier Transform.- Wavelets.- Generating Random Deviates.- Independent Monte Carlo.- Permutation Tests and the Bootstrap.- Finite-State Markov Chains.- Markov Chain Monte Carlo.- Advanced Topics in MCMC.