Incremental Learning for Motion Prediction of Pedestrians and Vehicles

Springer Tracts in Advanced Robotics Band 64

Alejandro Dizan Vasquez Govea

Buch (Taschenbuch, Englisch)
Buch (Taschenbuch, Englisch)
Fr. 127.00
Fr. 127.00
inkl. gesetzl. MwSt.
inkl. gesetzl. MwSt.
Versandfertig innert 6 - 9 Werktagen Versandkostenfrei
Versandfertig innert 6 - 9 Werktagen
Versandkostenfrei

Weitere Formate

Taschenbuch

Fr. 127.00

Accordion öffnen
  • Incremental Learning for Motion Prediction of Pedestrians and Vehicles

    Springer Berlin

    Versandfertig innert 6 - 9 Werktagen

    Fr. 127.00

    Springer Berlin

gebundene Ausgabe

Fr. 149.00

Accordion öffnen
  • Incremental Learning for Motion Prediction of Pedestrians and Vehicles

    Springer Berlin

    Versandfertig innert 1 - 2 Werktagen

    Fr. 149.00

    Springer Berlin

eBook (PDF)

Fr. 140.90

Accordion öffnen
  • Incremental Learning for Motion Prediction of Pedestrians and Vehicles

    PDF (Springer)

    Sofort per Download lieferbar

    Fr. 140.90

    PDF (Springer)

Beschreibung

PThe monograph written by Alejandro Dizan Vasquez Govea focuses on the practical problem of moving in a cluttered environment with pedestrians and vehicles. A framework based on Hidden Markov models is developed to learn typical motion patterns which can be used to predict motion on the basis of sensor data. All the theoretical results have been implemented and validated with experiments, using both real and simulated data./P PRemarkably, the monograph is based on the author's doctoral thesis, which received the prize of the Eight Edition of the EURON Georges Giralt PhD Award devoted to the best PhD thesis in Robotics in Europe. A very fine addition to STAR!/P

Produktdetails

Einband Taschenbuch
Seitenzahl 160
Erscheinungsdatum 05.09.2012
Sprache Englisch
ISBN 978-3-642-26385-9
Verlag Springer Berlin
Maße (L/B/H) 23.5/15.5/0.9 cm
Gewicht 278 g
Abbildungen farbige Illustrationen
Auflage 2010

Weitere Bände von Springer Tracts in Advanced Robotics

Kundenbewertungen

Es wurden noch keine Bewertungen geschrieben.
  • Artikelbild-0
  • I: Background.- Probabilistic Models.- II: State of the Art.- Intentional Motion Prediction.- Hidden Markov Models.- III: Proposed Approach.- Growing Hidden Markov Models.- Learning and Predicting Motion with GHMMs.- IV: Experiments.- Experimental Data.- Experimental Results.- V: Conclusion.- Conclusions and Future Work.