Causation, Prediction, and Search, Second Edition

Lecture Notes in Statistics Band 81

Peter Spirtes, Clark Glymour, Richard Scheines

Buch (Taschenbuch, Englisch)
Buch (Taschenbuch, Englisch)
Fr. 97.90
Fr. 97.90
inkl. gesetzl. MwSt.
inkl. gesetzl. MwSt.
Versandfertig innert 6 - 9 Werktagen Versandkostenfrei
Versandfertig innert 6 - 9 Werktagen
Versandkostenfrei

Weitere Formate

Taschenbuch

ab Fr. 97.90

Accordion öffnen
  • Causation, Prediction, and Search, Second Edition

    MIT Press

    Versandfertig innert 6 - 9 Werktagen

    Fr. 97.90

    MIT Press
  • Causation, Prediction, and Search

    Springer Us

    Versandfertig innert 6 - 9 Werktagen

    Fr. 156.00

    Springer Us

gebundene Ausgabe

Fr. 89.90

Accordion öffnen
  • Causation, Prediction and Search

    Mit Press

    Versandfertig innert 3 Wochen

    Fr. 89.90

    Mit Press

Beschreibung

The authors address the assumptions and methods that allow us to turn observations into causal knowledge, and use even incomplete causal knowledge in planning and prediction to influence and control our environment.

What assumptions and methods allow us to turn observations into causal knowledge, and how can even incomplete causal knowledge be used in planning and prediction to influence and control our environment? In this book Peter Spirtes, Clark Glymour, and Richard Scheines address these questions using the formalism of Bayes networks, with results that have been applied in diverse areas of research in the social, behavioral, and physical sciences.

The authors show that although experimental and observational study designs may not always permit the same inferences, they are subject to uniform principles. They axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models, including models of categorical data and structural equation models with and without latent variables.

The authors show that the relationship between causality and probability can also help to clarify such diverse topics in statistics as the comparative power of experimentation versus observation, Simpson's paradox, errors in regression models, retrospective versus prospective sampling, and variable selection.

The second edition contains a new introduction and an extensive survey of advances and applications that have appeared since the first edition was published in 1993.

Peter Spirtes is Professor in the Department of Philosophy at Carnegie Mellon University.

Clark Glymour is Alumni University Professor in the Department of Philosophy at Carnegie Mellon University and Senior Research Scientist at Florida Institute for Human and Machine Cognition. He is the author of
The Mind's Arrows: Bayes Nets and Graphical Causal Models in Psychology (MIT Press),
Galileo in Pittsburgh, and other books.

Richard Scheines is Dean of Dietrich College of Humanities and Social Sciences at Carnegie Mellon.

Produktdetails

Einband Taschenbuch
Seitenzahl 568
Altersempfehlung ab 18 Jahr(e)
Erscheinungsdatum 01.01.2001
Sprache Englisch
ISBN 978-0-262-52792-7
Reihe Adaptive Computation and Machine Learning series
Verlag MIT Press
Maße (L/B/H) 17.9/22.9/3.6 cm
Gewicht 934 g
Auflage 2. Auflage

Weitere Bände von Lecture Notes in Statistics

Kundenbewertungen

Es wurden noch keine Bewertungen geschrieben.
  • Artikelbild-0