Bifet, A: Machine Learning for Data Streams

with Practical Examples in MOA

Albert Bifet, Ricard Gavalda, Geoff Holmes, Bernhard Pfahringer

Die Leseprobe wird geladen.
Buch (gebundene Ausgabe, Englisch)
Buch (gebundene Ausgabe, Englisch)
Fr. 82.90
Fr. 82.90
inkl. gesetzl. MwSt.
inkl. gesetzl. MwSt.
Versandfertig innert 1 - 2 Wochen Versandkostenfrei
Versandfertig innert 1 - 2 Wochen

Weitere Formate

gebundene Ausgabe

Fr. 82.90

Accordion öffnen
  • Bifet, A: Machine Learning for Data Streams

    MIT Press Ltd

    Versandfertig innert 1 - 2 Wochen

    Fr. 82.90

    MIT Press Ltd

eBook (ePUB 3)

Fr. 66.90

Accordion öffnen


A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework.

Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations.

The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.

Albert Bifet is Professor of Computer Science at Télécom ParisTech.

Ricard Gavaldà is Professor of Computer Science at the Politècnica de Catalunya, Barcelona.

Geoff Holmes is Professor and Dean of Computing at the University of Waikato in Hamilton, New Zealand.

Bernhard Pfahringer is Professor of Computer Science at the University of Auckland, New Zealand.


Einband gebundene Ausgabe
Seitenzahl 288
Erscheinungsdatum 02.03.2018
Sprache Englisch
ISBN 978-0-262-03779-2
Reihe Adaptive Computation and Machine Learning series
Verlag MIT Press Ltd
Maße (L/B/H) 23.6/18.4/2.5 cm
Gewicht 718 g
Abbildungen 21 color illus., 29 b 50 Illustrations, unspecified


Es wurden noch keine Bewertungen geschrieben.
  • Artikelbild-0