Low Reynolds number hydrodynamics

Inhaltsverzeichnis

1. Introduction.- 1–1 Definition and purpose, 1. 1–2 Historical review, 8. 1–3 Application in science and technology, 13..- 2. The Behavior of Fluids in Slow Motion.- 2–1 The equations of change for a viscous fluid, 23. 2–2 Mechanical energy dissipation in a viscous fluid, 29. 2–3 Force and couple acting on a body moving in a viscous fluid, 30. 2–4 Exact solutions of the equations of motion for a viscous fluid, 31. 2–5 Laminar flow in ducts, 33. 2–6 Simplifications of the Navier-Stokes equations, especially for slow motion, 40. 2–7 Paradoxes in the solution of the creeping motion equations, 47. 2–8 Molecular effects in fluid dynamics, 49. 2–9 Non-newtonian flow, 51. 2–10 Unsteady creeping flows, 52..- 3. Some General Solutions and Theorems Pertaining to the Creeping Motion Equations.- 3–1 Introduction, 58. 3–2 Spherical coordinates, 62. 3–3 Cylindrical coordinates, 71. 3–4 Integral representations, 79. 3–5 Generalized reciprocal theorem, 85. 3–6 Energy dissipation, 88..- 4. Axisymmetrical Flow.- 4–1 Introduction, 96. 4–2 Stream function, 96. 4–3 Relation between stream function and local velocity, 98. 4–4 Stream function in various coordinate systems, 99. 4–5 Intrinsic coordinates, 100. 4–6 Properties of the stream function, 102. 4–7 Dynamic equation satisfied by the stream function, 103. 4–8 Uniform flow, 106. 4–9 Point source or sink, 106. 4–10 Source and sink of equal strength, 107. 4–11 Finite line source, 108. 4–12 Point force, 110. 4–13 Boundary conditions satisfied by the stream function, 111. 4–14 Drag on a body, 113. 4–15 Pressure, 116. 4–16 Separable coordinate systems, 117. 4–17 Translation of a sphere, 119. 4–18 Flow past a sphere, 123. 4–19 Terminal settling velocity, 124. 4–20 Slip at the surface of a sphere, 125. 4–21 Fluid sphere, 127. 4–22 Concentric spheres, 130. 4–23 General solution in spherical coordinates, 133. 4–24 Flow through a conical diffuser, 138. 4–25 Flow past an approximate sphere, 141. 4–26 Oblate spheroid, 145. 4–27 Circular disk, 149. 4–28 Flow in a venturi tube, 150. 4–29 Flow through a circular aperture, 153. 4–30 Prolate spheroid, 154. 4–31 Elongated rod, 156. 4–32 Axisymmetric flow past a spherical cap, 157..- 5. The Motion of a Rigid Particle of Arbitrary Shape in an Unbounded Fluid.- 5–1. Introduction, 159. 5–2 Translational motions, 163. 5–3 Rotational motions, 169. 5–4 Combined translation and rotation, 173. 5–5 Symmetrical particles, 183. 5–6 Nonskew bodies, 192. 5–7 Terminal settling velocity of an arbitrary particle, 197. 5–8 Average resistance to translation, 205. 5–9 The resistance of a slightly deformed sphere, 207. 5–10 The settling of spherically isotropic bodies, 219. 5–11 The settling of orthotopic bodies, 220..- 6. Interaction between Two or More Particles.- 6–1 Introduction, 235. 6–2 Two widely spaced spherically isotropic particles, 240: 6–3 Two spheres by the method of reflections and similar techniques, 249. 6–4 Exact solution for two spheres falling along their line of centers, 270. 6–5 Comparison of theories with experimental data for two spheres, 273. 6–6 More than two spheres, 276. 6–7 Two spheroids in a viscous liquid, 278. 6–8 Limitations of creeping motion equations, 281..- 7. Wall Effects on the Motion of a Single Particle.- 7–1 Introduction, 286. 7–2 The translation of a particle in proximity to container walls, 288. 7–3 Sphere moving in an axial direction in a circular cylindrical tube, 298. 7–4 Sphere moving relative to plane walls, 322. 7–5 Spheroid moving relative to cylindrical and plane walls, 331. 7–6 k-coefficients for typical boundaries, 340. 7–7 One- and two-dimensional problems, 341. 7–8 Solid of revolution rotating symmetrically in a bounded fluid, 346. 7–9 Unsteady motion of a sphere in the presence of a plane wall, 354..- 8. Flow Relative to Assemblages of Particles.- 8–1 Introduction, 358. 8–2 Dilute systems—no interaction effects, 360. 8–3 Dilute systems—first-order interaction effects, 371. 8–4 Concentrated systems, 387. 8–5 Systems with complex geometry, 400. 8–6 Particulate suspensions, 410. 8–7 Packed beds, 417. 8–8 Fluidization, 422..- 9. The Viscosity of Particulate Systems.- 9–1 Introduction, 431. 9–2 Dilute systems of spheres—no interaction effects, 438. 9–3 Dilute systems—first-order interaction effects, 443. 9–4 Concentrated systems, 448. 9–5 Nonspherical and nonrigid particles, 456. 9–6 Comparison with data, 462. 9–7 Non-newtonian behavior, 469..- Appendix A. Orthogonal Curvilinear Coordinate Systems.- A-l Curvilinear coordinates, 474. A-2 Orthogonal curvilinear coordinates, 477. A-3 Geometrical properties, 480. A-4 Differentiation of unit vectors, 481. A-5 Vector differential invariants, 483. A-6 Relations between cartesian and orthogonal curvilinear coordinates, 486. A-7 Dyadics in orthogonal curvilinear coordinates, 488. A-8 Cylindrical coordinate systems, 490. A-9 Circular cylindrical coordinates, 490. A-10 Conjugate cylindrical coordinate systems, 494. A-ll Elliptic cylinder coordinates, 495. A-12 Bipolar cylinder coordinates, 497. A-l3 Parabolic cylinder coordinates, 500. A-14 Coordinate systems of revolution, 501. A-l5 Spherical Coordinates, 504. A-l6 Conjugate coordinate systems of revolution, 508. A-17 Prolate spheroidal coordinates, 509. A-18 Oblate spheroidal coordinates, 512. A-19 Bipolar coordinates, 516. A-20 Toroidal coordinates, 519. A-21 Paraboloidal Coordinates, 521..- Appendix B. Summary of Notation and Brief Review of Polyadic Algebra.- Name Index.
Band 1

Low Reynolds number hydrodynamics

with special applications to particulate media

Buch (Taschenbuch, Englisch)

Fr.181.00

inkl. gesetzl. MwSt.

Low Reynolds number hydrodynamics

Ebenfalls verfügbar als:

Taschenbuch

Taschenbuch

ab Fr. 181.00
eBook

eBook

ab Fr. 175.90

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

30.09.1983

Verlag

Springer Netherland

Seitenzahl

553

Maße (L/B/H)

24/16/3.1 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

30.09.1983

Verlag

Springer Netherland

Seitenzahl

553

Maße (L/B/H)

24/16/3.1 cm

Gewicht

1750 g

Auflage

1983

Sprache

Englisch

ISBN

978-90-247-2877-0

Weitere Bände von Mechanics of Fluids and Transport Processes

Das meinen unsere Kund*innen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Kund*innenkonto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kund*innen meinen

0.0

0 Bewertungen filtern

  • Low Reynolds number hydrodynamics
  • 1. Introduction.- 1–1 Definition and purpose, 1. 1–2 Historical review, 8. 1–3 Application in science and technology, 13..- 2. The Behavior of Fluids in Slow Motion.- 2–1 The equations of change for a viscous fluid, 23. 2–2 Mechanical energy dissipation in a viscous fluid, 29. 2–3 Force and couple acting on a body moving in a viscous fluid, 30. 2–4 Exact solutions of the equations of motion for a viscous fluid, 31. 2–5 Laminar flow in ducts, 33. 2–6 Simplifications of the Navier-Stokes equations, especially for slow motion, 40. 2–7 Paradoxes in the solution of the creeping motion equations, 47. 2–8 Molecular effects in fluid dynamics, 49. 2–9 Non-newtonian flow, 51. 2–10 Unsteady creeping flows, 52..- 3. Some General Solutions and Theorems Pertaining to the Creeping Motion Equations.- 3–1 Introduction, 58. 3–2 Spherical coordinates, 62. 3–3 Cylindrical coordinates, 71. 3–4 Integral representations, 79. 3–5 Generalized reciprocal theorem, 85. 3–6 Energy dissipation, 88..- 4. Axisymmetrical Flow.- 4–1 Introduction, 96. 4–2 Stream function, 96. 4–3 Relation between stream function and local velocity, 98. 4–4 Stream function in various coordinate systems, 99. 4–5 Intrinsic coordinates, 100. 4–6 Properties of the stream function, 102. 4–7 Dynamic equation satisfied by the stream function, 103. 4–8 Uniform flow, 106. 4–9 Point source or sink, 106. 4–10 Source and sink of equal strength, 107. 4–11 Finite line source, 108. 4–12 Point force, 110. 4–13 Boundary conditions satisfied by the stream function, 111. 4–14 Drag on a body, 113. 4–15 Pressure, 116. 4–16 Separable coordinate systems, 117. 4–17 Translation of a sphere, 119. 4–18 Flow past a sphere, 123. 4–19 Terminal settling velocity, 124. 4–20 Slip at the surface of a sphere, 125. 4–21 Fluid sphere, 127. 4–22 Concentric spheres, 130. 4–23 General solution in spherical coordinates, 133. 4–24 Flow through a conical diffuser, 138. 4–25 Flow past an approximate sphere, 141. 4–26 Oblate spheroid, 145. 4–27 Circular disk, 149. 4–28 Flow in a venturi tube, 150. 4–29 Flow through a circular aperture, 153. 4–30 Prolate spheroid, 154. 4–31 Elongated rod, 156. 4–32 Axisymmetric flow past a spherical cap, 157..- 5. The Motion of a Rigid Particle of Arbitrary Shape in an Unbounded Fluid.- 5–1. Introduction, 159. 5–2 Translational motions, 163. 5–3 Rotational motions, 169. 5–4 Combined translation and rotation, 173. 5–5 Symmetrical particles, 183. 5–6 Nonskew bodies, 192. 5–7 Terminal settling velocity of an arbitrary particle, 197. 5–8 Average resistance to translation, 205. 5–9 The resistance of a slightly deformed sphere, 207. 5–10 The settling of spherically isotropic bodies, 219. 5–11 The settling of orthotopic bodies, 220..- 6. Interaction between Two or More Particles.- 6–1 Introduction, 235. 6–2 Two widely spaced spherically isotropic particles, 240: 6–3 Two spheres by the method of reflections and similar techniques, 249. 6–4 Exact solution for two spheres falling along their line of centers, 270. 6–5 Comparison of theories with experimental data for two spheres, 273. 6–6 More than two spheres, 276. 6–7 Two spheroids in a viscous liquid, 278. 6–8 Limitations of creeping motion equations, 281..- 7. Wall Effects on the Motion of a Single Particle.- 7–1 Introduction, 286. 7–2 The translation of a particle in proximity to container walls, 288. 7–3 Sphere moving in an axial direction in a circular cylindrical tube, 298. 7–4 Sphere moving relative to plane walls, 322. 7–5 Spheroid moving relative to cylindrical and plane walls, 331. 7–6 k-coefficients for typical boundaries, 340. 7–7 One- and two-dimensional problems, 341. 7–8 Solid of revolution rotating symmetrically in a bounded fluid, 346. 7–9 Unsteady motion of a sphere in the presence of a plane wall, 354..- 8. Flow Relative to Assemblages of Particles.- 8–1 Introduction, 358. 8–2 Dilute systems—no interaction effects, 360. 8–3 Dilute systems—first-order interaction effects, 371. 8–4 Concentrated systems, 387. 8–5 Systems with complex geometry, 400. 8–6 Particulate suspensions, 410. 8–7 Packed beds, 417. 8–8 Fluidization, 422..- 9. The Viscosity of Particulate Systems.- 9–1 Introduction, 431. 9–2 Dilute systems of spheres—no interaction effects, 438. 9–3 Dilute systems—first-order interaction effects, 443. 9–4 Concentrated systems, 448. 9–5 Nonspherical and nonrigid particles, 456. 9–6 Comparison with data, 462. 9–7 Non-newtonian behavior, 469..- Appendix A. Orthogonal Curvilinear Coordinate Systems.- A-l Curvilinear coordinates, 474. A-2 Orthogonal curvilinear coordinates, 477. A-3 Geometrical properties, 480. A-4 Differentiation of unit vectors, 481. A-5 Vector differential invariants, 483. A-6 Relations between cartesian and orthogonal curvilinear coordinates, 486. A-7 Dyadics in orthogonal curvilinear coordinates, 488. A-8 Cylindrical coordinate systems, 490. A-9 Circular cylindrical coordinates, 490. A-10 Conjugate cylindrical coordinate systems, 494. A-ll Elliptic cylinder coordinates, 495. A-12 Bipolar cylinder coordinates, 497. A-l3 Parabolic cylinder coordinates, 500. A-14 Coordinate systems of revolution, 501. A-l5 Spherical Coordinates, 504. A-l6 Conjugate coordinate systems of revolution, 508. A-17 Prolate spheroidal coordinates, 509. A-18 Oblate spheroidal coordinates, 512. A-19 Bipolar coordinates, 516. A-20 Toroidal coordinates, 519. A-21 Paraboloidal Coordinates, 521..- Appendix B. Summary of Notation and Brief Review of Polyadic Algebra.- Name Index.