Univalent Functions and Teichmüller Spaces
Band 109

Univalent Functions and Teichmüller Spaces

Aus der Reihe

Fr. 106.00

inkl. gesetzl. MwSt.

Univalent Functions and Teichmüller Spaces

Ebenfalls verfügbar als:

Taschenbuch

Taschenbuch

ab Fr. 106.00
eBook

eBook

ab Fr. 93.90

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

08.11.2011

Verlag

Springer Us

Seitenzahl

260

Maße (L/B/H)

23.5/15.5/1.6 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

08.11.2011

Verlag

Springer Us

Seitenzahl

260

Maße (L/B/H)

23.5/15.5/1.6 cm

Gewicht

433 g

Auflage

Softcover reprint of the original 1st ed. 1987

Sprache

Englisch

ISBN

978-1-4613-8654-4

Weitere Bände von Graduate Texts in Mathematics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Univalent Functions and Teichmüller Spaces
  • I Quasiconformal Mappings.- to Chapter I.- 1. Conformal Invariants.- 1.1 Hyperbolic metric.- 1.2 Module of a quadrilateral.- 1.3 Length-area method.- 1.4 Rengel’s inequality.- 1.5 Module of a ring domain.- 1.6 Module of a path family.- 2. Geometric Definition of Quasiconformal Mappings.- 2.1 Definitions of quasiconformality.- 2.2 Normal families of quasiconformal mappings.- 2.3 Compactness of quasiconformal mappings.- 2.4 A distortion function.- 2.5 Circular distortion.- 3. Analytic Definition of Quasiconformal Mappings.- 3.1 Dilatation quotient.- 3.2 Quasiconformal diffeomorphisms.- 3.3 Absolute continuity and differentiability.- 3.4 Generalized derivatives.- 3.5 Analytic characterization of quasiconformality.- 4. Beltrami Differential Equation.- 4.1 Complex dilatation.- 4.2 Quasiconformal mappings and the Beltrami equation.- 4.3 Singular integrals.- 4.4 Representation of quasiconformal mappings.- 4.5 Existence theorem.- 4.6 Convergence of complex dilatations.- 4.7 Decomposition of quasiconformal mappings.- 5. The Boundary Value Problem.- 5.1 Boundary function of a quasiconformal mapping.- 5.2 Quasisymmetric functions.- 5.3 Solution of the boundary value problem.- 5.4 Composition of Beurling-Ahlfors extensions.- 5.5 Quasi-isometry.- 5.6 Smoothness of solutions.- 5.7 Extremal solutions.- 6. Quasidiscs.- 6.1 Quasicircles.- 6.2 Quasiconformal reflections.- 6.3 Uniform domains.- 6.4 Linear local connectivity.- 6.5 Arc condition.- 6.6 Conjugate quadrilaterals.- 6.7 Characterizations of quasidiscs.- II Univalent Functions.- to Chapter II.- 1. Schwarzian Derivative.- 1.1 Definition and transformation rules.- 1.2 Existence and uniqueness.- 1.3 Norm of the Schwarzian derivative.- 1.4 Convergence of Schwarzian derivatives.- 1.5 Area theorem.- 1.6 Conformal mappings of a disc.- 2. Distance between Simply Connected Domains.- 2.1 Distance from a disc.- 2.2 Distance function and coefficient problems.- 2.3 Boundary rotation.- 2.4 Domains of bounded boundary rotation.- 2.5 Upper estimate for the Schwarzian derivative.- 2.6 Outer radius of univalence.- 2.7 Distance between arbitrary domains.- 3. Conformal Mappings with Quasiconformal Extensions.- 3.1 Deviation from Möbius transformations.- 3.2 Dependence of a mapping on its complex dilatation.- 3.3 Schwarzian derivatives and complex dilatations.- 3.4 Asymptotic estimates.- 3.5 Majorant principle.- 3.6 Coefficient estimates.- 4. Univalence and Quasiconformal Extensibility of Meromorphic Functions.- 4.1 Quasiconformal reflections under Möbius transformations.- 4.2 Quasiconformal extension of Conformal mappings.- 4.3 Exhaustion by quasidiscs.- 4.4 Definition of Schwarzian domains.- 4.5 Domains not linearly locally connected.- 4.6 Schwarzian domains and quasidiscs.- 5. Functions Univalent in a Disc.- 5.1 Quasiconformal extension to the complement of a disc.- 5.2 Real analytic solutions of the boundary value problem.- 5.3 Criterion for univalence.- 5.4 Parallel strips.- 5.5 Continuous extension.- 5.6 Image of discs.- 5.7 Homeomorphic extension.- III Universal Teichmüller Space.- to Chapter III.- 1. Models of the Universal Teichmüller Space.- 1.1 Equivalent quasiconformal mappings.- 1.2 Group structures.- 1.3 Normalized Conformal mappings.- 1.4 Sewing problem.- 1.5 Normalized quasidiscs.- 2. Metric of the Universal Teichmüller Space.- 2.1 Definition of the Teichmüller distance.- 2.2 Teichmüller distance and complex dilatation.- 2.3 Geodesics for the Teichmüller metric.- 2.4 Completeness of the universal Teichmüller space.- 3. Space of Quasisymmetric Functions.- 3.1 Distance between quasisymmetric functions.- 3.2 Existence of a section.- 3.3 Contractibility of the universal Teichmüller space.- 3.4 Incompatibility of the group structure with the metric.- 4. Space of Schwarzian Derivatives.- 4.1 Mapping into the space of Schwarzian derivatives.- 4.2 Comparison of distances.- 4.3 Imbedding of the universal Teichmüller space.- 4.4 Schwarzian derivatives of univalent functions.- 4.5 Univalent functions and the universal Teichmüller space.- 4.6 Closure of the universal Teichmüller space.- 5. Inner Radius of Univalence.- 5.1 Definition of the inner radius of univalence.- 5.2 Isomorphic Teichmüller spaces.- 5.3 Inner radius and quasiconformal extensions.- 5.4 Inner radius and quasiconformal reflections.- 5.5 Inner radius of sectors.- 5.6 Inner radius of ellipses and polygons.- 5.7 General estimates for the inner radius.- IV Riemann Surfaces.- to Chapter IV.- 1. Manifolds and Their Structures.- 1.1 Real manifolds.- 1.2 Complex analytic manifolds.- 1.3 Border of a surface.- 1.4 Differentials on Riemann surfaces.- 1.5 Isothermal coordinates.- 1.6 Riemann surfaces and quasiconformal mappings.- 2. Topology of Covering Surfaces.- 2.1 Lifting of paths.- 2.2 Covering surfaces and the fundamental group.- 2.3 Branched covering surfaces.- 2.4 Covering groups.- 2.5 Properly discontinuous groups.- 3. Uniformization of Riemann Surfaces.- 3.1 Lifted and projected Conformal structures.- 3.2 Riemann mapping theorem.- 3.3 Representation of Riemann surfaces.- 3.4 Lifting of continuous mappings.- 3.5 Homotopic mappings.- 3.6 Lifting of differentials.- 4. Groups of Möbius Transformations.- 4.1 Covering groups acting on the plane.- 4.2 Fuchsian groups.- 4.3 Elementary groups.- 4.4 Kleinian groups.- 4.5 Structure of the limit set.- 4.6 Invariant domains.- 5. Compact Riemann Surfaces.- 5.1 Covering groups over compact surfaces.- 5.2 Genus of a compact surface.- 5.3 Function theory on compact Riemann surfaces.- 5.4 Divisors on compact surfaces.- 5.5 Riemann-Roch theorem.- 6. Trajectories of Quadratic Differentials.- 6.1 Natural parameters.- 6.2 Straight lines and trajectories.- 6.3 Orientation of trajectories.- 6.4 Trajectories in the large.- 6.5 Periodic trajectories.- 6.6 Non-periodic trajectories.- 7. Geodesics of Quadratic Differentials.- 7.1 Definition of the induced metric.- 7.2 Locally shortest curves.- 7.3 Geodesic polygons.- 7.4 Minimum property of geodesics.- 7.5 Existence of geodesies.- 7.6 Deformation of horizontal arcs.- V Teichmüller Spaces.- to Chapter V.- 1. Quasiconformal Mappings of Riemann Surfaces.- 1.1 Complex dilatation on Riemann surfaces.- 1.2 Conformal structures.- 1.3 Group isomorphisms induced by quasiconformal mappings.- 1.4 Homotopy modulo the boundary.- 1.5 Quasiconformal mappings in homotopy classes.- 2. Definitions of Teichmüller Space.- 2.1 Riemann space and Teichmüller space.- 2.2 Teichmüller metric.- 2.3 Teichmüller space and Beltrami differentials.- 2.4 Teichmüller space and Conformal structures.- 2.5 Conformal structures on a compact surface.- 2.6 Isomorphisms of Teichmüller spaces.- 2.7 Modular group.- 3. Teichmüller Space and Lifted Mappings.- 3.1 Equivalent Beltrami differentials.- 3.2 Teichmüller space as a subset of the universal space.- 3.3 Completeness of Teichmüller spaces.- 3.4 Quasi-Fuchsian groups.- 3.5 Quasiconformal reflections compatible with a group.- 3.6 Quasisymmetric functions compatible with a group.- 3.7 Unique extremality and Teichmüller metrics.- 4. Teichmüller Space and Schwarzian Derivatives.- 4.1 Schwarzian derivatives and quadratic differentials.- 4.2 Spaces of quadratic differentials.- 4.3 Schwarzian derivatives of univalent functions.- 4.4 Connection between Teichmüller spaces and the universal space.- 4.5 Distance to the boundary.- 4.6 Equivalence of metrics.- 4.7 Bers imbedding.- 4.8 Quasiconformal extensions compatible with a group.- 5. Complex Structures on Teichmüller Spaces.- 5.1 Holomorphic functions in Banach spaces.- 5.2 Banach manifolds.- 5.3 A holomorphic mapping between Banach spaces.- 5.4 An atlas on the Teichmüller space.- 5.5 Complex analytic structure.- 5.6 Complex structure under quasiconformal mappings.- 6. Teichmüller Space of a Torus.- 6.1 Covering group of a torus.- 6.2 Generation of group isomorphisms.- 6.3 Conformal equivalence of tori.- 6.4 Extremal mappings of tori.- 6.5 Distance of group isomorphisms from the identity.- 6.6 Representation of the Teichmüller space of a torus.- 6.7 Complex structure of the Teichmüller space of torus.- 7. Extremal Mappings of Riemann Surfaces.- 7.1 Dual Banach spaces.- 7.2 Space of integrable holomorphic quadratic differentials.- 7.3 Poincaré theta series.- 7.4 Infinitesimally trivial differentials.- 7.5 Mappings with infinitesimally trivial dilatations.- 7.6 Complex dilatations of extremal mappings.- 7.7 Teichmüller mappings.- 7.8 Extremal mappings of compact surfaces.- 8. Uniqueness of Extremal Mappings of Compact Surfaces.- 8.1 Teichmüller mappings and quadratic differentials.- 8.2 Local representation of Teichmüller mappings.- 8.3 Stretching function and the Jacobian.- 8.4 Average stretching.- 8.5 Teichmüller’s uniqueness theorem.- 9. Teichmüller Spaces of Compact Surfaces.- 9.1 Teichmüller imbedding.- 9.2 Teichmüller space as a ball of the euclidean space.- 9.3 Straight lines in Teichmüller space.- 9.4 Composition of Teichmüller mappings.- 9.5 Teichmüller discs.- 9.6 Complex structure and Teichmüller metric.- 9.7 Surfaces of finite type.