Metric Constrained Interpolation, Commutant Lifting and Systems
Band 100

Metric Constrained Interpolation, Commutant Lifting and Systems

Aus der Reihe

Metric Constrained Interpolation, Commutant Lifting and Systems

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 110.00
Taschenbuch

Taschenbuch

ab Fr. 72.90
eBook

eBook

ab Fr. 62.90

Fr. 72.90

inkl. MwSt, Versandkostenfrei

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

17.10.2012

Verlag

Springer Basel

Seitenzahl

587

Maße (L/B/H)

23.5/15.5/3.3 cm

Gewicht

914 g

Auflage

Softcover reprint of the original 1st ed. 1998

Sprache

Englisch

ISBN

978-3-0348-9775-4

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

17.10.2012

Verlag

Springer Basel

Seitenzahl

587

Maße (L/B/H)

23.5/15.5/3.3 cm

Gewicht

914 g

Auflage

Softcover reprint of the original 1st ed. 1998

Sprache

Englisch

ISBN

978-3-0348-9775-4

EU-Ansprechpartner

IBS Logistics
Benzstr. 21, 48619 - DE, Heek
contact@ibs-logistics.de

Herstelleradresse

Springer Basel AG
Picassoplatz 4
4010 Basel
Schweiz
Telephone: +41 61 2050707
Fax: +41 61 2050799

Weitere Bände von Operator Theory: Advances and Applications

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Metric Constrained Interpolation, Commutant Lifting and Systems
  • A Interpolation And Time-Invariant Systems.- I. Interpolation Problems For Operator-Valued Functions.- 1.1. Preliminaries About Notation And Terminology.- 1.2. Nevanlinna-Pick Interpolation.- 1.3. Tangential Nevanlinna-Pick Interpolation.- 1.4. Controllability Operators And Interpolation.- 1.5. Tangential Hermite-Fejer Interpolation.- 1.6. The Nehari Extension Problem.- 1.7. Sarason Interpolation.- 1.8. Nevanlinna-Pick Interpolation Viewed As A Sarason Problem.- 1.9. Two-Sided Nudelman Interpolation.- 1.10. The Two-Sided Sarason Problem.- 1.11. A Filtering Problem.- Notes To Chapter I.- II. Proofs Using The Commutant Lifting Theorem.- II.1. The Commutant Lifting Theorem.- II.2. Proof Of The Standard Left Nevanlinna-Pick Interpolation Theorem.- II.3. Proof Of The Nehari Extension Theorem.- II.4. Proof of the Sarason Theorem.- II.5. Proof of the Two-Sided Nudelman Theorem.- II.6. Proof of the Two-Sided Sarason Theorem.- Notes to Chapter II.- III. Time Invariant Systems.- III.1. State Space Analysis.- III.2. Controllability and Observability.- III.3. Point Evaluation.- III.4. Realization Theory.- III.5. Anticausal Realizations.- III.6. Computing the Hankel form.- III.7. Computing the Projection in the Sarason Problem.- III.8. Explicit Conversion Formulas.- III.9. Connecting Nudelman and Two-Sided Sarason Problems.- III.10. Isometric and Unitary Systems.- Notes to Chapter III.- IV. Central Commutant Lifting.- IV. 1. Minimal Isometric Liftings.- IV.2. The Central Intertwining Lifting.- IV.3. Central Intertwining Lifting Formulas.- IV.4. Central Intertwining Lifting Quotient Formulas.- IV.5. The Central Schur Solution.- IV.6. The Quasi Outer Factor for D2/By.- IV.7. Maximum Entropy.- IV.8. Some Mixed Bounds for the Central Intertwining Lifting.- IV.9. A Mixed Two-Sided Sarason Result.- Notes To Chapter IV.- V. Central State Space Solutions.- V.1. The Central Formula For Nevanlinna-Pick.- V.2. Central Nevanlinna-Pick Solutions.- V.3. The Central Hermite-Fejer Solution.- V.4. The Central Formula For The Sarason Problem.- V.5. Central Nehari Solutions.- V.6. Central Nudelman Solutions.- V.7. The Central Two Block Solution.- V.8. The Four Block Problem.- Notes To Chapter V.- VI. Parameterization Of Intertwining Liftings And Its Applications.- VI.1. The Möbius Transformation.- VI.2. The Schur Parameterization.- VI.3. Recovering The Schur Contraction..- VI. 4. Constructing The Schur Contraction.- VI.5. The Redheffer Scattering Parameterization.- VI.6. The Parameterization for A ?.- VI.7. The Nevalinna-Pick Parameterization.- VI.8. The Nehari Parameterization.- VI.9. The Two Block Parameterization.- Notes To Chapter VI.- VII. Applications to Control Systems.- VII. 1. Feedback Control.- VII.2. The Youla Parameterization.- VII.3. Mixed H? and H2 Control Problems.- VII.4. A Two Block Control Problem.- VII.5. The Multivariable Case.- Notes To Chapter VII.- B Nonstationary Interpolation and Time-Varying Systems.- VIII. Nonstationary Interpolation Theorems.- VIII.1. Nonstationary Nevanlinna-Pick Interpolation.- VIII.2. Nonstationary Tangential Nevanlinna-Pick Interpolation.- VIII.3. Nonstationary Tangential Hermite-Fejer Interpolation.- VIII.4. Nonstationary Nehari Interpolation.- VIII.5. Nonstationary Sarason Interpolation.- VIII.6. Nonstationary Nudelman Interpolation.- VIII.7. Nonstationary Two-Sided Sarason Interpolation.- Notes to Chapter VIII.- IX. Nonstationary Systems and Point Evaluation.- IX.1. Time Varying Systems.- IX.2. Nonstationary Controllability and Observability.- IX.3. Point Evaluation.- IX.4. From Nonstationary Systems to Stationary Systems.- IX.5. A Nonstationary Filtering Problem.- Notes to Chapter IX.- X. Reduction Techniques: From Nonstationary to Stationary and Vice Versa.- X.1. Spatial Features.- X.2. Operator Features.- Notes to Chapter X.- XI. Proofs of the Nonstationary Interpolation Theorems by Reduction to the Stationary Case.- XI.1. The Standard Nonstationary Nevanlinna-Pick Interpolation Theorem.- XI.2. The Nonstationary Version of Neharf’S Theorem.- XI.3. The Nonstationary Sarason Interpolation Theorem.- XI.4. The Nonstationary Version of Nudelman’S Theorem.- XI.5. The Nonstationary Two-Sided Sarason Interpolation Theorem.- Notes To Chapter XI.- XII. A General Completion Theorem.- XII. 1. The Three Chains Completion Theorem.- XII.2. Proof by One Step Extensions.- XII.3. An Explicit Solution of the Three Chains Completion Problem.- XII.4. Maximum Entropy.- XII.5. A Quotient Formula for the Central Interpolant.- XII.6. The Caswell-Schubert Theorem.- Notes to Chapter XII..- XIII. Applications of the Three Chains Completion Theorem to Interpolation.- XIII.1. Abstract Nonstationary Interpolation.- XIII.2. Application to Nevanlinna-Pick Interpolation.- XIII.3. Application to the Nehari Problem.- XIII.4. Application to the Two-Sided Sarason Problem.- XIII.5. Application to the Nudelman Problem.- XIII.6. The Three Chains Completion Problem and the Four Block Problem.- Notes To Chapter XIII.- XIV. Parameterization of All Solutions of the Three Chains Completion Problem.- XIV.1. Main Theorem.- XIV.2. Proof Of Main Theorem (First Part).- XIV.3. Proof of Main Theorem (Second Part).- XIV.4. The Case of Decreasing Spaces.- XIV.5. The Nonstationary Nehari Parameterization.- Notes to Chapter XIV.- Appendix on Factorization of Matrix-Valued Functions.- A.1. Square Outer Spectral Factorizations.- A.2. Inner-Outer Factorizations.- Notes to Appendix.- References.- List of Symbols.