• Cohomology of Groups
  • Cohomology of Groups
Band 87

Cohomology of Groups

Aus der Reihe

Fr. 95.90

inkl. gesetzl. MwSt.

Cohomology of Groups

Ebenfalls verfügbar als:

Gebundenes Buch

Gebundenes Buch

ab Fr. 95.90
Taschenbuch

Taschenbuch

ab Fr. 83.90
eBook

eBook

ab Fr. 80.90

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.10.1982

Verlag

Springer Us

Seitenzahl

309

Maße (L/B/H)

24.1/16/2.3 cm

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

01.10.1982

Verlag

Springer Us

Seitenzahl

309

Maße (L/B/H)

24.1/16/2.3 cm

Gewicht

653 g

Auflage

1982

Sprache

Englisch

ISBN

978-0-387-90688-1

Weitere Bände von Graduate Texts in Mathematics

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

  • Cohomology of Groups
  • Cohomology of Groups
  • I Some Homological Algebra.- 0. Review of Chain Complexes.- 1. Free Resolutions.- 2. Group Rings.- 3. G-Modules.- 4. Resolutions of Z Over ZG via Topology.- 5. The Standard Resolution.- 6. Periodic Resolutions via Free Actions on Spheres.- 7. Uniqueness of Resolutions.- 8. Projective Modules.- Appendix. Review of Regular Coverings.- II The Homology of a Group.- 1. Generalities.- 2. Co-invariants.- 3. The Definition of H*G.- 4. Topological Interpretation.- 5. Hopfs Theorems.- 6. Functoriality.- 7. The Homology of Amalgamated Free Products.- Appendix. Trees and Amalgamations.- III Homology and Cohomology with Coefficients.- 0. Preliminaries on ?G and HomG.- 1. Definition of H*(G, M) and H*(G, M).- 2. Tor and Ext.- 3. Extension and Co-extension of Scalars.- 4. Injective Modules.- 5. Induced and Co-induced Modules.- 6. H* and H* as Functors of the Coefficient Module.- 7. Dimension Shifting.- 8. H* and H* as Functors of Two Variables.- 9. The Transfer Map.- 10. Applications of the Transfer.- IV Low Dimensional Cohomology and Group Extensions.- 1. Introduction.- 2. Split Extensions.- 3. The Classification of Extensions with Abelian Kernel.- 4. Application: p-Groups with a Cyclic Subgroup of Index p.- 5. Crossed Modules and H3 (Sketch).- 6. Extensions With Non-Abelian Kernel (Sketch).- V Products.- 1. The Tensor Product of Resolutions.- 2. Cross-products.- 3. Cup and Cap Products.- 4. Composition Products.- 5. The Pontryagin Product.- 6. Application: Calculation of the Homology of an Abelian Group.- VI Cohomology Theory of Finite Groups.- 1. Introduction.- 2. Relative Homological Algebra.- 3. Complete Resolutions.- 4. Definition of ?*.- 5. Properties of ?*.- 6. Composition Products.- 7. A Duality Theorem.- 8. Cohomologically Trivial Modules.- 9. Groups with Periodic Cohomology.- VII Equivariant Homology and Spectral Sequences.- 1. Introduction.- 2. The Spectral Sequence of a Filtered Complex.- 3. Double Complexes.- 4. Example: The Homology of a Union.- 5. Homology of a Group with Coefficients in a Chain Complex.- 6. Example: The Hochschild-Serre Spectral Sequence.- 7. Equivariant Homology.- 8. Computation of d1.- 9. Example: Amalgamations.- 10. Equivariant Tate CohoMology.- VIII Finiteness Conditions.- 1. Introduction.- 2. CohoMological Dimension.- 3. Serre’s Theorem.- 4. Resolutions of Finite Type.- 5. Groups of Type FPn.- 6. Groups of Type FF and FL.- 7. Topological Interpretation.- 8. Further Topological Results.- 9. Further Examples.- 10. Duality Groups.- 11. Virtual Notions.- IX Euler Characteristics.- 1. Ranks of Projective Modules: Introduction.- 2. The Hattori-Stallings Rank.- 3. Ranks Over Commutative Rings.- 4. Ranks Over Group Rings; Swan’s Theorem.- 5. Consequences of Swan’s Theorem.- 6. Euler Characteristics of Groups: The Torsion-Free Case.- 7. Extension to Groups with Torsion.- 8. Euler Characteristics and Number Theory.- 9. Integrality Properties of ?(?).- 10. Proof of Theorem 9.3; Finite Group Actions.- 11. The Fractional Part of ?(?).- 12. Acyclic Covers; Proof of Lemma 11.2.- 13. The p-Fractional Part of ?(?).- 14. A Formula for ??(A).- X Farrell Cohomology Theory.- 1. Introduction.- 2. Complete Resolutions.- 3. Definition and Properties of ?*(?)277.- 4. Equivariant Farrell Cohomology.- 5. Cohomologically Trivial Modules.- 6. Groups with Periodic Cohomology.- 7. ?*(?) and the Ordered Set of Finite Subgroups of ?.- References.- Notation Index.